\qquad
Unit 6: Graphs and Inverses of Trig Functions

1. The top of a spring is attached to the ceiling and the bottom is attached to a weight which is oscillating vertically so that the weight is furthest from the ceiling every 4 seconds. Find $y(t)=A \sin (B t-C)+D$ where t is the time in seconds and $y(t)$ is the distance of the weight from the ceiling in feet, given the following:
a. The maximum distance of the weight from the ceiling is 8 ft and the minimum distance from the ceiling is 2 ft , which occurs at $\mathrm{t}=0 \mathrm{sec}$.
b. The maximum distance of the weight from the ceiling is 6 ft , which occurs a $t=I$ sec and the minimum distance from the ceiling is 3 ft .
c. The average distance of the weight from the ceiling is 7 ft and the maximum distance of the weight from the ceiling is 10 ft which occurs at $\mathrm{t}=3 \mathrm{sec}$.
d. The distance between the maximum and minimum distances from the ceiling is 5 ft . At $\mathrm{t}=4 \mathrm{sec}$ the weight attains its maximum distance of 9 ft from the ceiling.
2. In a particular harbor, high and low tides occur twice each 24 hours. Find $h(t)=A \sin (B t-C)+D$ where $h(t)$ is the water level t hours after midnight given the following:
a. High tide is 6 ft and low tide, which occurs at 4 am is 2 ft .
b. The average water level is 8 ft and high tide is 10 ft , which occurs at 11 pm .
3. In a particular harbor, high and low tide occur twice each 24 hours. Find $h(t)=A \cos (B t-C)+D$ where $h(t)$ is the water level, in feet, t hours after midnight given the following:
a. High tide is 8 ft and low tide, which occurs at 5 am , is 2 ft .
b. The average water level is 7 ft and high tide is 10 ft , which occurs at 8 pm .
4. Determine a function in the form $y=A \sin (B t-C)+D$ which oscillates between -2 and 6 , has period 4 , and passes through the point $(\mathrm{t}, \mathrm{y})=(1,6)$.
5. Determine a function of the form $y=A \cos (B t-C)+D$ which oscillates between -6 and 2 , has period 3π, and passes through the point $(\mathrm{t}, \mathrm{y})=(\pi / 2,-6)$
6. Determine a function of the form $y=A \sin (B t-C)+D$ which oscillates between -4 and 10 , has period π, and passes through the point $(\mathrm{t}, \mathrm{y})=(\pi / 2,10)$.
7. Determine a function of the form $y=A \sin (B t-C)+D$ which oscillates between 8 and 14 , has period $\pi / 2$, and passes through the point $(\mathrm{t}, \mathrm{y})=(\pi / 4,8)$.
