\qquad
Unit \#8: Extended Trigonometry Lesson 8: Velocity and Force Vectors

EQ:

Speed --- \qquad quantity that refers to how \qquad an object is moving; the \qquad $a t$ which an object covers a distance; does not keep track of \qquad

Velocity -- the \qquad at which an object changes its \qquad ; \qquad quantity therefore \qquad aware;

Force Vector --- represents \qquad and amount of \qquad acting on an object;
includes a \qquad part and a \qquad part

- Recall:

If \qquad , then the horizontal and vertical components of $\overrightarrow{\boldsymbol{V}}$ in terms of θ and $\|\vec{v}\|$ are :
$\stackrel{\rightharpoonup}{v}=$ \qquad

Define a Force Vector as: \qquad

Ex 1. Write the vector v in the form $a i+b j$, given its magnitude $\|\vec{v}\|=5$ and the angle $\alpha=60^{\circ}$.

Ex 2. A ball is thrown 82 mph in a direction that makes a 30° angle with the positive x-axis. What is the initial speed in both the horizontal and vertical directions?

Ex 3. A man pushes a wheelbarrow up and incline of 20° with a force of 100 pounds. Express the force vector F in terms of i and j.

- Recall: Resultant Vector
is a resultant vector

F2

Ex 4. Two forces, one of 150 lb and the other of 200 lb act on a body and make an angle measuring $56^{\circ} 20^{\prime}$ with each other.

a. What is the magnitude (to the nearest pound) and the direction (to the nearest minute) of the resultant of the forces?
b. What is the measure of the angle that the resultant makes with the 200-lb force?

Method 2:

Ex 5. Two forces of magnitude 30 N and 70 N act on an object at angles 45° and 120° with the positive x-axis. Find the direction and magnitude of the resultant force; that is, find $F_{1}+F_{2}$.

- Static Equilibrium --- an object is at \qquad ; the \qquad of all forces acting on the object is \qquad ـ.
\qquad
$+$ \qquad $+$ \qquad $=$ \qquad
\qquad $+$ \qquad $+$ \qquad $=$ \qquad

Ex. A box of supplies that weighs 1200 pounds is suspended by two cables attached to the ceiling as shown below. What is the tension in the two cables?

Recall: Systems of Equations

$$
\begin{aligned}
& A x+B y=0 \\
& C x+D y=0
\end{aligned}
$$

Solving for x, II F_{1} II and y, II F_{2} II. \qquad $x+$ \qquad
\qquad
\qquad $x+$ \qquad $y=$ \qquad HOW?

Set up a matrix equation and solve using your graphing calculator.

$X=\left[\begin{array}{l}- \\ - \\ -\end{array}\right]$

II F_{1} II or tension on right cable $=$ \qquad

II F_{2} II or tension on left cable $=$ \qquad

Ex. A weight of 800 pounds is suspended from two cables as shown below. What is the tension on the cables?

Hor Component: \qquad

Vert Component: \qquad

II F_{1} II or tension on right cable $=$ \qquad
II F_{2} Il or tension on left cable $=$ \qquad

Assignment: Practice Worksheet: Force Vectors And Static Equilibrium

