\qquad
Unit \#2: Algebra Topics
EQ:

Circle --- the set of all points in a plane that are a common distance, called the , from a fixed point, called the \qquad .

center: \qquad radius: \qquad

* Standard Form of a Circle: An equation for the circle with its center at \qquad and a radius of \qquad is \qquad
* Standard Equation of a Translated Circle: The standard equation for a circle with its center at \qquad and a radius of \qquad is \qquad
Ex. 1 Write the standard equation of the circle whose center is at the origin and whose radius is 3 . Sketch the graph.

Ex. 2 Write the standard equation of the translated circle graphed at the right.

Ex. 3 A cell phone tower is located 25 miles east and 30 miles south of Lorne's home. The tower's signal is strong enough to reach phones within a 50 miles radius. Write the equation that represents all ground locations 50 miles from the cell phone tower, given that Lorne's home is located at $(0,0)$.

Can a person living 10 miles east and 5 miles north of Lorne receive the tower's signal?

Ex. 4 Write the standard form for the circle $x^{2}+y^{2}+4 x-6 y-3=0$.
State the coordinates of its center and give the radius. Then graph the circle.

Ex. 5 Write the standard form for the circle $x^{2}+y^{2}-8 x+7=0$.
State the coordinates of its center and give the radius. Then graph the circle.

* In class practice.

1. Write the standard form of the circle graphed at the right.

2. $\operatorname{Graph}(x-1)^{2}+(y-5)^{2}=4$

3. Find the center and radius of the circle with the given equation.
a. $(x-3)^{2}+(y-4)^{2}=36$ center: \qquad radius: \qquad
b. $x^{2}+y^{2}-6 x-4 y-12=0$
center: \qquad radius: \qquad
