Accel Precalc Notes: Normal Distributions
Name \qquad
Unit \#1: Data Analysis
Lesson \#8: Normal Distribution

EQ:

Recall: Three Types of Distributions

Normal Distributions --- created from \qquad random variables

Characteristics of a Normal Distribution:

1. \qquad
\qquad -Shaped Curve and \qquad modal.
2. \qquad are equal and located at the \qquad of the distribution.
\qquad about the \qquad Not \qquad
3. The curve is \qquad , no gaps or holes. The curve never touches or crosses the
\qquad
4. The total \qquad under the curve equals \qquad .

Recall: \qquad Rule

Normal Distribution --- each has its own \qquad and \qquad

What are μ and σ in this normal distribution?

Standard Normal Distribution --- mean is \qquad Standard Normal Distribution and standard deviation is \qquad

How do you make a ND \square SND? \qquad
z-score --- the number of \qquad above or below the \qquad
$z=$
or
$Z=$

Correlates to \qquad under the curve.

Ex. In a study of bone brittleness, the ages of
 people at the onset of osteoporosis followed a normal distribution with a mean age of 71 and a standard deviation of 2.8 years. What z-score would an age of 65 represent in this study?

* Finding the Area under the Curve

Ex. Find the area under the curve to the left of $z=-2.18$.

Ex. Find the area under the curve to the left of $z=1.35$.

Ex. Find the area under the curve to the right of $z=0.75$.

Ex. Find the area under the curve between $z=-1.36$ and $z=0.42$.

Ex. Find the area under the curve between $z=1.60$ and $z=3.3$.

What about finding a z-score when given area under the curve?
Ex. Determine the z-score that would give this area under the curve.

Ex. Determine the z-score that would give this area under the curve.

Ex. Determine the z-score that would give this area under the curve.

* Practice Worksheet: Calculating Area Using z-scores

