Handout: Exploring Sinusoidal Graphs Name:_____ Accel Precalc Unit #6: Graphs and Inverses of Trig Functions Lesson 7: Sinusoidal Graphs EQ: <u>Recall:</u> Linear Combination in Algebra --- a linear combination of _____ and ____ would result in an expression of the form _____ + _____ Linear Combination in Trigonometry --- combination of _____ and _____ is the sum in the form ______ + _____ Sinusoidal Curve --- a waveform with ______ that can be graphically expressed as the _____ y = _____ A = _____ B = ____ t = ____ h = _____ D = ____ 2 Recall: Sketch sine parent function: 1 -2π $-\frac{3\pi}{2}$ $-\pi$ $-\frac{\pi}{2}$ <u>3π</u> $\frac{\pi}{2}$ π 2π • Recall: Terms for Transformations 1-2

Part I: Determine if a given linear combination is sinusoidal.

↔ Place calculator in Radian mode. Set Window: X values $[-2\pi, 2\pi]_{\pi/4}$ Y values $[-8,8]_1$ Graph each function. Sketch the graph beside the equation. Which appear to be sinusoidal?

3. $y = 2\sin 3x + 4\cos 2x$

4. y = 3sin5x - 5cos5x

5. y = 4sinx - 2cosx 6. y = 2sin3x + 3cos2x

- Which, if any appear to be sinusoidal?
- What do the sinusoidal equations have in common?

Part II: How do you write the equation of a sinusoid in the form y = Asin[B(x - C)] + D?

Ex 1.	y = 2s	inx + 5cosx			Ť	
Step 1:	Graph y = your grap	2sinx + 5cosx us hing calculator. S	sing 5ketch.	4		
Step 2:	Find ampli	tude using max c	und min functio	ns on calculator.	↓ ↓	
	max =		min =	A =		
Step 3: Identify 2 zeros that <u>complete a cycle</u> . zero1 = zero2 =						
Calcul	ate the per	riod of the graph	using your zei	ros NP =	=	_
Determine B.		B = 2π/ NP	= = 2π/		B =	

Step 4: Use phase shift (use closest zero) to determine C. C = _____

*** PAY ATTENTION : Does the graph ______ or _____ at this zero? That will determine if you need _____ or _____ .

Step 5: Find average of max and min to determine horizontal axis of symmetry, D.

D = _____

: State function in the form f(x) = Asin[B(x - C)] + D.

f(x) = _____

* Place your function in **Y2**. Change your viewing window to Domain $[-\pi, \pi]_{\pi/4}$. Go over to the far left and change the line to **THICK** so you'll see a difference in the graphs. Graph your sinusoidal equation over the original to see if they are equal.

Complete these examples on your own.

Sketch each sinusoid on the graph provided. Mark max, min, and zeros on the graph. Show your work for determining each missing value A, B, C, and D in the equation y = Asin[B(x - C)] + D.

> Assignment: Practice Worksheet #1 Exploring Sinusoidal Graphs