Accel Precalc Handout: Exploring Sinusoidal Graphs Name: \qquad
Unit \#6: Graphs and Inverses of Trig Functions
Lesson 7: Sinusoidal Graphs
EQ:

Recall:

Linear Combination in Algebra --- a linear combination of \qquad and \qquad would result in an expression of the form \qquad $+$ \qquad
Linear Combination in Trigonometry --- combination of \qquad and \qquad is the sum in the form \qquad $+$ \qquad
Sinusoidal Curve --- a waveform with \qquad that can be graphically expressed as the \qquad
\qquad

$$
y=
$$

$A=$ \qquad $B=$ \qquad $t=$ \qquad
$h=$ \qquad
\qquad
Recall: Sketch sine parent function:

- Recall: Terms for Transformations

Part I: Determine if a given linear combination is sinusoidal.

* Place calculator in Radian mode. Set Window: X values $[-2 \pi, 2 \pi]_{\pi / 4}$ Y values $[-8,8]_{1}$ Graph each function. Sketch the graph beside the equation. Which appear to be sinusoidal?

1. $y=3 \sin x+2 \cos x$
2. $y=2 \sin x-3 \cos x$
3. $y=2 \sin 3 x+4 \cos 2 x$
4. $y=3 \sin 5 x-5 \cos 5 x$
5. $y=4 \sin x-2 \cos x$
6. $y=2 \sin 3 x+3 \cos 2 x$

- Which, if any appear to be sinusoidal?
- What do the sinusoidal equations have in common?

Part II: How do you write the equation of a sinusoid in the form $y=A \sin [B(x-C)]+D$?
Ex 1. $\quad y=2 \sin x+5 \cos x$
Step 1: Graph $y=2 \sin x+5 \cos x$ using your graphing calculator. Sketch.

Step 2: Find amplitude using max and min functions on calculator.

$$
\max =
$$

\qquad
\qquad $A=$ \qquad
Step 3: Identify 2 zeros that complete a cycle. zero $=$ \qquad zero2 $=$ \qquad

Calculate the period of the graph using your zeros NP = \qquad - \qquad $=$ \qquad
Determine B.
$B=2 \pi / N P$ \qquad $=2 \pi /$
$B=$ \qquad

Step 4: Use phase shift (use closest zero) to determine C. C= \qquad
*** PAY ATTENTION : Does the graph \qquad or \qquad at this zero? That will determine if you need \qquad or \qquad .

Step 5: Find average of max and min to determine horizontal axis of symmetry, D.

$$
D=
$$

\qquad
\therefore State function in the form $f(x)=A \sin [B(x-C)]+D$.

$$
f(x)=
$$

\qquad

* Place your function in Y2. Change your viewing window to Domain $[-\pi, \pi]_{\pi / 4}$. Go over to the far left and change the line to THICK so you'll see a difference in the graphs. Graph your sinusoidal equation over the original to see if they are equal.

Complete these examples on your own.
Sketch each sinusoid on the graph provided. Mark max, min, and zeros on the graph. Show your work for determining each missing value A, B, C, and D in the equation $y=A \sin [B(x-C)]+D$.

Ex 2. $y=4 \sin x+3 \cos x$

Ex 3. $y=2 \sin 3 x-4 \cos 3 x$

$$
y=
$$

\qquad
$A=$
$B=$
$C=$
$D=$

> Assignment: Practice Worksheet \#1 Exploring Sinusoidal Graphs

