Accel Precalc Notes: Algebraic Vectors Unit 8: Extended Trigonometry Lesson 6: Algebraic Vectors	Name
EQ:	
PART II: Algebraic Vectors	↓ <i>y</i>
Terms & Symbols to Know:	
• <u>Vectors in the Plane</u>	
 <u>x-component and y-component</u> 	
 <u>Angle of a Vector</u> the angle line. 	and the
RECALL: Polar to Rectangular	y =
The radius in the polar plane would equal the	of a vector.
<u>Magnitude of a Vector</u> of ve	ector
Notation:	
Horizontal Component = Ve	ertical Component =
Ex. Find the horizontal and vertical components	s of the given vector.
	F = 316 N 35 degrees

RECALL: How do you calculate the distance between two stationary points?

Ex. Find the magnitude of the vector \overline{PQ} whose initial point P is at (1, 1) and terminal point is at Q is at (5, 3).

• <u>Component form of a vector</u> --- ____ = ____ = _____ Ex Graph the following vectors. 1. $\mathbf{A} = 6\mathbf{i} - 3\mathbf{j}$ 2. $\mathbf{B} = 3\mathbf{i} + 4\mathbf{j}$ 3. $\vec{w} = \langle -2, 5 \rangle$ • <u>Position Vector</u> --- vector whose ______ point is at the ______ • <u>Calculating a Position Vector:</u> $\vec{v} = \langle -2, -3, -2 \rangle$

Ex. Given vector \vec{W} whose initial point is $P_1 = (-1, 2)$ and terminal point $P_2 = (4, 6)$, find the position vector \vec{V} .

 $Q(x_2,y_2)$

 $P(x_1,y_1)$

- <u>Unit Vector</u> --- a vector of length _____
- <u>Components of a Unit Vector</u> --- ____ = _____

Ex. Find a unit vector in the direction of v = -2i + 5j. Verify that this vector has length 1.

In Class Practice:

- 1. If OC has a magnitude of 5 and a direction angle of 125°, find the x- and y- components of OC to the nearest whole number.
- 2. Find the magnitude of $\vec{w} = \langle 3, -2 \rangle$.
- 3. An airplane with an air speed of 200 mi/h is flying on a heading of 58°. The wind is blowing from due north at 26 mi/h. What is the ground speed of the plane and the actual heading of its course?

4. Given vectors $\vec{v} = 2i + 7j$ and , $\vec{w} = 5i - 4j$

- a) write the vectors in component form.
- b) find $3\vec{v}$.
- c) find $2\vec{v} 3\vec{w}$
- d) find $\|\vec{v}\|$.
- e) find the unit vector, $\vec{\boldsymbol{u}}$, in the same direction as \boldsymbol{V} .

> Assignment: Practice Worksheet #2 Algebraic Vectors

