\qquad
Unit 8: Extended Trigonometry
Lesson 6: Algebraic Vectors

EQ:

PART II: Algebraic Vectors

Terms \& Symbols to Know:

- Vectors in the Plane
- x-component and y-component

- Angle of a Vector --- the angle \qquad and the \qquad
\qquad line.

RECALL: Polar to Rectangular

$$
x=
$$

$$
y=
$$

The radius in the polar plane would equal the \qquad of a vector.

- Magnitude of a Vector --- \qquad of vector

Notation: \qquad

Ex. Find the horizontal and vertical components of the given vector.

RECALL: How do you calculate the distance between two stationary points?

Ex. Find the magnitude of the vector $\overline{P Q}$ whose initial point P is at $(1,1)$ and terminal point is at Q is at $(5,3)$.

- Component form of a vector --- \qquad $=$ \qquad
\qquad $=$ \qquad

Ex Graph the following vectors.

1. $\quad \mathbf{A}=6 \mathbf{i}-3 \mathbf{j}$
2. $B=3 i+4 j$
3. $\vec{w}=\langle-2,5\rangle$

- Position Vector ---vector whose \qquad point is at the \qquad
- Calculating a Position Vector:

$$
\begin{aligned}
& \vec{v}=\langle\ldots \ldots, \ldots \\
& \text { _) }
\end{aligned}
$$

Ex. Given vector \vec{W} whose initial point is $P_{1}=(-1,2)$ and terminal point $P_{2}=(4,6)$, find the position vector \vec{v}.

- Unit Vector --- a vector of length \qquad
- Components of a Unit Vector --- \qquad $=$ \qquad
Ex. Find a unit vector in the direction of $\mathbf{v}=-\mathbf{2 i}+\mathbf{5 j}$. Verify that this vector has length 1 .

In Class Practice:

1. If $O C$ has a magnitude of 5 and a direction angle of 125°, find the x - and y-components of $O C$ to the nearest whole number.
2. Find the magnitude of $\vec{w}=\langle 3,-2\rangle$.

3. An airplane with an air speed of $200 \mathrm{mi} / \mathrm{h}$ is flying on a heading of 58°. The wind is blowing from due north at $26 \mathrm{mi} / \mathrm{h}$. What is the ground speed of the plane and the actual heading of its course?
4. Given vectors $\vec{v}=2 i+7 j$ and, $\vec{w}=5 i-4 j$
a) write the vectors in component form.

b) find $3 \vec{v}$.
c) find $2 \vec{v}-3 \vec{W}$
d) find $\|\vec{v}\|$.
e) find the unit vector, $\overrightarrow{\boldsymbol{u}}$, in the same direction as $\overrightarrow{\boldsymbol{V}}$.
