Accel Precalc Notes: Inverse of a Matrix Name \qquad
Unit 3: Matrices
Lesson 4: Inverse of Matrices (Part 1)

EQ:
Part I: Defining Inverse Matrices

- Terms to Recall

Square Matrix -

Zero Matrix -

Ex. 1 Multiply.
a) $\left[\begin{array}{ll}3 & 1 \\ 2 & 4\end{array}\right] \cdot\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=$
b) $\left[\begin{array}{ccc}-4 & 6 & 9 \\ 0 & 2 & 3 \\ -5 & 8 & 7\end{array}\right] \cdot\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=$

- What do you notice about each product?
- What name can we give a matrix in the form
- What are the characteristics of this matrix?

$$
\left[\begin{array}{ccccc}
1 & 0 & 0 & \cdots & 0 \\
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\cdots & \cdots & 0 & \cdots & \cdots \\
0 & 0 & 0 & \cdots & 1
\end{array}\right] \quad ?
$$

* When a given \qquad , A, is multiplied by the \qquad I, the matrix A keeps its values.

Therefore \qquad

Ex. 2 Multiply.
a) Let $A=\left[\begin{array}{cc}-3 & 1 \\ 5 & -2\end{array}\right]$

Find $A B$
b) Let

$$
M=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]
$$

$$
B=\left[\begin{array}{ll}
-2 & -1 \\
-5 & -3
\end{array}\right]
$$

$$
N=\left[\begin{array}{cc}
-2 & 1 \\
\frac{3}{2} & \frac{-1}{2}
\end{array}\right]
$$

Find MN

- What was the product matrix both times?

The product of \qquad is ___ $\quad \frac{-2}{3} \bullet \frac{-3}{2}=1$

Two matrices are \qquad of each other if their product is the
\qquad
Ex. 3 Determine if each pair of matrices are inverses of each other.
a) $A=\left[\begin{array}{ll}3 & 1 \\ 2 & 1\end{array}\right]$

$$
B=\left[\begin{array}{cc}
1 & -1 \\
-2 & 3
\end{array}\right]
$$

b) $C=\left[\begin{array}{ll}2 & 5 \\ 3 & 7\end{array}\right]$

$$
D=\left[\begin{array}{cc}
-7 & 5 \\
3 & -2
\end{array}\right]
$$

