Accel Math III Handout: Transformations of Sine \& Cosine \qquad
Unit \#6: Graphs and Inverses of Trig Functions Lesson \#4: Transformations of Sine and Cosine

EQ:
$>$ Recall: Transformations of Graphs of Functions
Given $y=f(x) \quad$ transformed function $y=$ \qquad
Where:
\qquad
$>$ Standard Form of Sine and Cosine Equations: \qquad
$y=$ \qquad

- Amplitude --- represented by \qquad : notation \qquad ; measured from the
\qquad line of \qquad .

Graphically --- distance from \qquad line of symmetry to \qquad or
\qquad

Algebraically ---
Find the amplitude both graphically and algebraically. Write the function represented by the graph.

Ex. 2

Graphically =
Algebraically =
Graphically =
Algebraically =

$$
y=
$$

\qquad

$$
y=
$$

\qquad

- New Period --- complete \qquad on \qquad or \qquad using \qquad from equation

RECALL: Sine and Cosine cycle every \qquad or \qquad radians.

Ex 3. What is the amplitude and new period for the graph below?
$|A|=$

Use graph to determine B.

$B=$ \qquad Identify \qquad points, then determine the period of the graph. NP= \qquad

$$
y=\ldots \cos (\ldots x)
$$

Use amplitude and new period to graph the equation.

Ex 4. $y=3 \cos \left(\frac{1}{2} x\right) \quad A=$ \qquad $B=$ \qquad Calculate New Period:

Where are 4 consecutive critical points?

Ex5. $y=-4 \cos$ Calculate New Period:

What intervals should you use on the x-axis? Where are 4 consecutive critical points? $B=$

$x-a x$
ints?

$$
y=A \sin [B(x-C)]+D \quad y=A \cos [B(x-C)]+D
$$

- Phase Shift (horizontal) --- represented by \qquad
- Vertical Shift --- represented by \qquad
Based on your knowledge of transformations, answer these questions about each equation.

6. $y=\sin (x-\pi / 4)$

- How is this graph transformed? \qquad
- What happens to the x-value? \qquad
- What about the y-value? \qquad
- Has the period changed? \qquad
- Has the maximum value changed? \qquad
- Has the minimum value changed? \qquad

7. $y=-\sin (x)+2$

- How is this graph transformed?
- What happens to the x-value? \qquad
- What about the y-value? \qquad
- Has the period changed? \qquad
- Has the maximum value changed? \qquad
- Has the minimum value changed? \qquad

8. $y=2 \cos (x+\pi / 2)-1$

- How is this graph transformed?
- What happens to the x-value? \qquad

- What about the y-value?
- Has the period changed? \qquad
- Has the maximum value changed? \qquad

- Has the minimum value changed?

9. $y=\cos (3 x)$

- How is this graph transformed? \qquad
- What happens to the x-value? \qquad
- What about the y-value? \qquad

- Has the period changed? \qquad $N P=$ \qquad
- What are the new critical points? \qquad
- Has the maximum value changed? \qquad
- Has the minimum value changed?
* Use amplitude, new period, phase shift, and vertical shift to graph the equation.

Ex 10. $y=-2 \sin (2 x-\pi)+1 \quad$ must rewrite as $y=$ \qquad

$$
A=\ldots \quad C=\ldots \quad D=
$$

Amplitude $=$ \qquad Reflect Across x-axis? \qquad $N P=$ \qquad Critical Pts $=$ \qquad

Phase Shift = \qquad Vertical Shift = \qquad

> Assignment: PW \#1 Graphing Sine and Cosine PW \#2 Writing Equations of Sine and Cosine PW \#3 Graphing Sine and Cosine

