\qquad
Unit \#6: Graphs and Inverses of Trig Functions Lesson 2: Evaluate Trig Functions of Angles Not on Unit Circle EQ:

Yesterday we derived all of values of the 6 trig functions for the angles on the
\qquad . We were able to do this because all \qquad on the Unit Circle are one of our "special angles" --- \qquad - \qquad ${ }^{\circ}$, or \qquad \circ.

On the Unit Circle, since the \qquad (\qquad) is $1, \cos \theta$ will always $=$ the \qquad side and $\sin \theta$ will always = the \qquad side.

But what happens if you are \qquad on the \qquad and \qquad is \qquad one of the

RECALL: Define the 6 Trig Functions Using a Right Triangle
Coordinate Plane Trigonometry

$\sin \theta=$
$\csc \theta=$
$\sec \theta=$
$\cot \theta=$

In class examples: Define all 6 trig functions at the given point.

1. $(3,1)$
2. $(-24,10)$
3. $(-5,-6)$
4. $(6,-14)$

* Assignment: Worksheet \#3: Evaluate Trig Functions On and Off the Unit Circle p. 320 ODD \#5-11, 19-25

