\qquad
Unit \#1: Data Analysis Lesson \#12: Conf Int for Means

EQ:

* Terms to Recall:

Measure Statistic Parameter

Mean

Standard Deviation

In theory you will never know \qquad That is why you use \qquad to estimate.

* New Terms:

Ex. average age of students might be in interval $17.9<\mu<18.7$ or 18.3 ± 0.4 years
0.4 is called the \qquad

- Confidence Level --- \qquad that the \qquad will contain the
\qquad .
- Confidence Interval --- specific \qquad estimate for a \qquad
\qquad determined by using \qquad obtained from a \qquad .

Distribution of Confidence Intervals

\qquad

Use the Table C to determine the corresponding t^{\star} value for each interval when n is very large.

Verify using Table A of z values
$P(z \leq 1.645)=$

* Formula for Confidence Intervals For Means:

Recall: Standard Error
se $=$ \qquad
Uses a \qquad -distribution and \qquad of \qquad .
$d f=$ \qquad

Recall: Central Limit Theorem
When the \qquad is \qquad enough, $\cong 95 \%$ of the sample means will fall within 1.96
\qquad of the \qquad .

This means for a 95% confidence interval: \qquad \pm \qquad (\quad)
> Write the general formula for:
a 90\% confidence interval \qquad

a 99\% confidence interval. \qquad

$>$ Ex1. Find the t^{\star} values for the following then write the general formula for the confidence interval.
a) 90% conf int when sample size is 22

b) 95% conf int when sample size is 15

c) $99^{\text {th }}$ percentile when sample size is 30

Confidence Interval Statement: We are \qquad \% confident the true population mean [write in context of problem] is between \qquad [write units in context] and \qquad [write units in context].
$>$ In Class Examples. Place formula and work on your own paper. Make a conclusion statement in context of the problem.

1. A researcher wishes to estimate the average of money a person spends on lottery tickets each month. A sample of 50 people who play the lottery found the mean to $\$ 19$ and the standard deviation to be 6.8. Find the best point estimate of the population and the 95% confidence interval of the population mean.
2. The following data represent a sample of the assets (in millions of dollars) of 30 credit unions in southwestern Pennsylvania. Find the 90% confidence interval of the mean. Use 1-var stat to find needed statistics.
12.23
1.42
3.17
5.01
16.56
4.39
73.25
18.13
1.47
1.91
7.92
12.24
2.27
4.78
$2.89 \quad 1.24$
14.64
11.59
16.85
12.77
2.17
13.19
9.16
8.74
21.58
2.76
3. A study of 30 marathon runners showed that they could run at an average of 7.8 miles per hour. The sample standard deviation is 0.6 . Find the point estimate for the mean of all runners. Based on the results, what minimum speed should a runner obtain to qualify in a marathon at a 90% confidence level.
4. Ten randomly selected automobiles were stopped and the tread depth of the right front tire was measured. The mean was 0.32 in and the standard deviation was 0.08 in . Find the point estimate and the confidence interval of the mean right tire depth for a 95% confidence level. Assume that the variable is approximately normally distributed.
5. The data below represent a sample of the number of home fires started by candles for the past seven years. Find the point estimate and the confidence interval for the mean number of home fires started by candles each year at a 99% confidence. Assume the variable is normally distributed.

5460
5900
6090
6310
7160
8440
9930

Assignment: Practice Worksheet Confidence Intervals

