Name _____ Accel Precalc Notes: Law of Sines Unit 8: Extended Trigonometry Lesson 1: Law of Sine (Part I) EQ: What trig ratios are used to solve right triangles? Recall: Two Methods to Solve "Non-Right Triangles": 2._____ 1. How can we solve this non-right triangle? Let's drop down a perpendicular from $\angle B$. Call it h. в Ð. С We have formed ______ triangles. The left triangle has the following trig relationship: *sin A* = _____ *WHY*? _____=____ The triangle on the right has the trig relationship: *sin C* = _____ *WHY*? _____ = _____ Using the transitive property: If ______ = _____ and _____ = _____, then _____ = _____ Divide both sides by ac: _____= _____

Ex. 1 Given \triangle ABC with side a = 8, $\angle A = 30^{\circ}$ and $\angle C = 55^{\circ}$. Find side c to the nearest tenth.

Ex. 3 Given $\triangle ABC$ with $\angle A = 50^\circ$, $\angle B = 70^\circ$ and a = 12. Solve the triangle.

b =

∠A = a =

 $\angle C = c =$

∠**B** =

Ex. 4 Solve \triangle ABC if $\angle B = 30^\circ$, $\angle C = 70^\circ$ and b = 10.

 $\angle A = a =$

 $\angle B = b =$

$$\angle C = c =$$

Use Law of Sines when you have a ______

Assignment: Practice Worksheet #1

c = 20

a = 55

110°

