\qquad
Unit 8: Extended Trigonometry
Lesson 1: Law of Sine (Part I)

EQ:

Recall: What trig ratios are used to solve right triangles?

Two Methods to Solve "Non-Right Triangles":

1. \qquad 2. \qquad

Let's drop down a perpendicular from $\angle B$. Call it h.

We have formed \qquad triangles.

The left triangle has the following trig relationship: $\sin A=$ \qquad WHY?
\qquad

The triangle on the right has the trig relationship: $\sin C=$ \qquad WHY?
\qquad

$$
=
$$

\qquad

Using the transitive property: If \qquad $=$ and \qquad , then
\qquad $=$ \qquad

Divide both sides by ac: \qquad $=$ \qquad

\qquad

Ex. 1 Given $\triangle A B C$ with side $a=8, \angle A=30^{\circ}$ and $\angle C=55^{\circ}$. Find side c to the nearest tenth.

Ex 2. Given $\triangle A B C$ with side $a=55, c=20$, and $\angle A=110^{\circ}$. Find the measure of $\angle C$ to the nearest degree.

Ex. 3 Given $\triangle A B C$ with $\angle A=50^{\circ}, \angle B=70^{\circ}$ and $a=12$. Solve the triangle.

$\angle A=$

$$
a=
$$

$\angle B=$ $b=$

$\angle C=$
$c=$

Ex. 4 Solve $\triangle A B C$ if $\angle B=30^{\circ}, \angle C=70^{\circ}$ and $b=10$.
$\angle A=$
$a=$
$b=$

$\angle B=$
$c=$
> Use Law of Sines when you have a \qquad

* Assignment: Practice Worksheet \#1

