\qquad
Unit 8: Extended Trigonometry
Lesson 2: Law of Cosines
EQ:

Two Methods to Solve "Oblique Triangles":
-

- \qquad If a problem refers to \qquad and an
\qquad
Use the Following Cases for Law of Cosines:
I. \qquad --- \qquad
II. \qquad ---

Case I:

Formulas for Law of Cosines:
Case II:

\qquad $=$ \qquad $\ldots=$ \qquad
\qquad
\qquad

Ex 1. Given side $b=12$, side $c=20$ and $m \angle A=40^{\circ}$. Find the length of side a to the nearest integer.

Ex. 2 Find the measure of the largest angle, to the nearest tenth of a degree, of a triangle whose sides are 9,12 , and 18.

Ex. 3 In a parallelogram, the adjacent sides measure 40 cm and 22 cm . If the larger angle of the parallelogram measure 116°, find the length of the longer diagonal, to the nearest integer.

Ex. $4 A$ surveyor wishes to find the distance between two inaccessible points A and B on opposite sides of a lake. While standing at point C, she finds that $A C=259 \mathrm{~m}, B C=423 \mathrm{~m}$, and angle $A C B$ measures $132^{\circ} 40^{\prime}$. Find the distance $A B$.

