\qquad
Unit \#8: Extended Trigonometry
Lesson 7: Scalar (Dot) Products
EQ:

Recall: Use the given side lengths and $\angle C B A=44^{\circ}$ to find the missing side for $\triangle A B C$.

* How can we find the angle between the given vectors?
- draw the resultant of $v 2-v 1$
- create third side of triangle
- find magnitude of $v 2-v 1$

Recall: Magnitude is
$\|\nu 2-v 1\|=$ \qquad

Ex 1. Find the angle between the given vectors.

$$
v 2=\langle\ldots, \quad v 1=\langle\ldots, \ldots\rangle
$$

- Note these are \qquad .
$\|v 2-v 1\|=$ \qquad

Now use law of cosines to find α.

Ex 2. Sketch the vectors then find the angle between them using the Law of Cosines.

$$
\vec{w}=-3 i+2 j \quad \vec{v}=4 i+j
$$

Ex. 3 Find the angle θ between the vectors.

RECALL:

Vector Operations:

Result? Vector or Scalar

1) Addition/ Subtraction
2) Scalar Multiplication
3) Magnitude
4) Dot Product
????

Given two vectors, A and B, as shown to the right, the dot product of vectors A and B will have the following relationship:

\qquad $=$ \qquad - \qquad . \qquad
$|A|$ represents the \qquad of A
$|B|$ represents the \qquad of B
θ is the \qquad between the two vectors

- Definition of Dot Product In Component Form:

Given $\vec{v}=\left\langle v_{x}, v_{y}\right\rangle \quad$ and $\quad \vec{u}=\left\langle u_{x}, u_{y}\right\rangle$
\qquad
\qquad

Ex 4. Find the following dot products.
a. $\quad\langle 4,5\rangle \cdot\langle 2,3\rangle$
b. Given $\vec{v}=2 i-j$ and $\vec{w}=i+2 j$ find $\vec{v} \cdot \vec{w}$.

Purpose of dot product: Use as an alternative method for finding an \qquad between

RECALL:

\qquad $=$ \qquad
\qquad $=\cos \theta$

$$
\therefore \cos ^{-1}(\ldots \ldots
$$

Ex 5. Find the angle between the vectors using the dot product.

$$
v 2=\langle\ldots, \ldots\rangle
$$

$$
v 1=\langle\ldots, \ldots
$$

Ex 6 . Find the angle between the vectors using the dot product.

$$
\vec{w}=-3 i+2 j \quad \vec{v}=4 i+j
$$

* In class practice:

Ex 7. Find the angle between $\vec{w}=4 i-3 j$ and $\vec{v}=2 i+5 j$

Ex 8. Find the angle between $\vec{w}=3 i+4 j$ and $\vec{v}=5 i+3 j$

Ex 9. Find the component vector for each.

RECALL: $\vec{v}=$ \qquad
a. $\quad \theta=45^{\circ},\|\nu\|=3$
b. $\quad \theta=120^{\circ},\|\nu\|=5$
c. $\quad \theta=205^{\circ},\|v\|=2$

