\qquad
Ch 9.3: Sample Means
EQ:

* Penny Activity

1. Use a small cup and select pennies from the class collection. At your desk, count out 25 pennies from your cup. Return the remaining pennies to the class collection.
2. Without looking at your pennies, sketch the density curve that you think best shows the shape of the distribution of ages of the pennies you have selected.
3. Complete the following frequency table and determine the age of your 25 pennies from this year.

4. Put your pennies in a cup and randomly select 5 pennies. Calculate \bar{x}. Replace the pennies and repeat for 4 more trials.
$T 1: \bar{x}(5)=$ \qquad $T 2: \bar{x}(5)=$ \qquad T3: $\bar{x}(5)=$ \qquad T4: $\bar{x}(5)=$ \qquad $T 5: \bar{x}(5)=$ \qquad
5. Repeat step \#5, except this time randomly select 10 pennies.
$\mathrm{T} 1: \bar{x}(10)=$ \qquad $T 2: \bar{x}(10)=$ \qquad $T 3: \bar{x}(10)=$ \qquad T4: $\bar{x}(10)=$ \qquad $T 5: \bar{x}(10)=$ \qquad
6. Repeat step \#5, except this time select all 25 pennies.
$\mathrm{T} 1: \bar{x}(25)=$ \qquad
7. Creating dot plots to show shape of our sampling distributions: Go to the board and place a dot at the age for each of your pennies. Use the correct color marker to plot your five means for penny samples of size 1, size 5, and size 10 and your one mean for sample size 25. After everyone has done this, sketch the shape of each histogram below.

RECALL: Shape of distribution of population of pennies.

$$
\bar{x}(n=25)
$$

* CONCLUSION:

Our original population distribution was not described as Normal nor was it bell-shaped. In fact it was
\qquad .

However, as we increased the \qquad the distribution got close and closer to a \qquad curve and could be approximated using a
\qquad . This property is called the

- Sample Means --- \qquad of observations
- Sample Means are \qquad than \qquad .
- Sample Means have a \qquad than \qquad ـ.

RECALL: Sampling Proportions

\qquad
\qquad
\qquad $=$ \qquad
The sampling distribution of \qquad is \qquad under what condition?
\qquad and \qquad satisfy the conditions \qquad ≥ 10 \qquad ≥ 10
\qquad is the \qquad of an \qquad of size \qquad drawn from a \qquad with mean \qquad and standard deviation \qquad .

\qquad from \qquad behaves like \qquad

1. \qquad estimator of \qquad
2. \qquad for larger \qquad
3. Use Standard Error if ___ (__ Independence

* Behavior of Sampling Means:

True no matter what \qquad of the \qquad

- Central Limit Theorem ---SRS of size \qquad taken from population with mean \qquad and standard deviation \qquad :

When \qquad \geq \qquad
\qquad is \qquad to N(\qquad ,

- Law of Large Numbers --- draw observations at \qquad from any \qquad with finite mean \qquad : As observations \square. \neq

\qquad
\qquad \neq

SPARK NOTES FOR THIS SECTION:

[1] The \qquad is always \qquad the from which the samples were drawn.
[2] The \qquad is always \qquad the
\qquad divided by the \qquad .
[3] [And the most amazing part!!] The \qquad will increasingly as the \qquad .

* Assignment: Worksheet: Sample Means;
p. 595-596

