\qquad
Ch 6.3: General Probability Rules
EQ:
Important Recall: Complete each Statement

* For any event A and its \qquad , \qquad $=$ \qquad -
* When two events, A and B, are \qquad , then \qquad $=$ \qquad .
* If two events, A and B, are \qquad , then \qquad $=$ \qquad .
* Given two events, A and B, then \qquad $=$ \qquad
* Contingency Tables --- two-way tables giving \qquad for categorical variables
* Joint Probabilities --- \qquad occurrence of \qquad events

Ex. The following information was given about the success of an ad campaign.
$P($ heard $a d)=0.35$
$P($ bought product $)=0.23 \quad P($ heard ad and bought product $)=0.15$
Complete the contingency table.

BOUGHT PRODUCT

1. Find $P($ did not hear ad $)=$
2. Find $P($ did not buy product $)=$ \qquad

* Assignment: p. 440 \#65-68
* Conditional Probability --- probability of one event \qquad we know
\qquad read " probability \qquad " FORMULA: \qquad $=$ \qquad
** If \qquad $=$ \qquad
\qquad what can we say about events A and B ?

Why?

Recall: Independent Events
If events A and B are \qquad , then the probability of B happening \qquad depend upon whether A has happened or not. Therefore

Recall: Not Independent Events

If A and B are \qquad events, the probability of B happening, \qquad depend upon whether A has happened or not. We therefore have to introduce conditional probabilities in the tree diagram (as shown below):

Recall:

The rule for combining probabilities for Not Independent Events is:

$$
P(\square)=P(\square) \times P(\square)
$$

This is equivalent to saying

Example 1:

Every morning I buy either The Times or The Mail. The probability that I buy The Times is $3 / 4$ and the probability that I buy The Mail is $1 / 4$. If I buy The Times, the probability that I complete the crossword is $2 / 5$. If I buy The Mail the probability that I complete the crossword is $4 / 5$.

a) Find the probability that I complete the crossword on any particular day.

From the tree diagram, $\mathrm{P}($ complete crossword $)=$
b) If I have completed the crossword, find the probability that I bought The Mail.

Example 2:

0.1% of the population carries a particular faulty gene. A test exists for detecting whether an individual is a carrier of the gene. In people who actually carry the gene, the test provides a positive result with probability 0.9 . In people who don't carry the gene, the test provides a positive result with probability 0.01 . If someone gives a positive result when tested, find the probability that they actually are a carrier of the gene.

Use the following notation: $G=$ person carries gene $P=$ test is positive for gene

However, P(\qquad $)=P($ \qquad and \qquad) +P \qquad and \qquad) $=$ \qquad $+$ \qquad $=$ \qquad

Therefore, $\mathrm{P}($ \qquad (___) $)=\square=$ \qquad

So there is a very \qquad chance of actually having the gene even if the test says that you have it.

Note: This example highlights the difficulty of detecting rare conditions or diseases.

* RECALL: Multiplication Rule for Independent Events:

If events A and B are \qquad evens, then we can say \qquad $=$ \qquad

- The Converse Statement of This Rule Says:

If \qquad $=$ \qquad then we can assume A and B are \qquad events.
> USE THIS STATEMENT TO \qquad

* Assignment: Conditional Probability Worksheet
* Assignment: Examples Section 6.3 Worksheet
* Assignment: p. 446 \#71-76, p. 452 \#79-84

