AP Stat Ch 6.3: General Probability	Handout: Probability Rules Rules	Name	
EQ:			
Important Recall: Complete	each Statement		
For any event A and its		=	·
 When two events, A and 	1 B, are	_, then=	·
 If two events, A and B, 	are, then	==	
 Given two events, A and 	B, then= _		
✤ Contingency Tables	two-way tables giving	for categoric	al variables
✤ Joint Probabilities	occu	rrence of eve	ents
Ex. The following inform	nation was given about the succe:	ss of an ad campaign.	
P(heard ad) = 0.35	P(bought product) = 0.23	B P(heard ad and bought	product) = 0.15
Complete the contingency t	able.	HEARD AD	TOTAL
BOUG	HT PRODUCT	yes no	TOTAL
	NO		
	TOTAL		
1. Find P(did not hear	ad) = 2. Fin	d P(did not buy product) = _	
☆ Assignment: p.	440 #65 - 68		
Conditional Probability	probability of one event	v	ve know
read " pro	bability	_" FORMULA:	_ =
** If=	=	what can we say about	events A and B?

Why?

Example 1:

Every morning I buy either The Times or The Mail. The probability that I buy The Times is $\frac{3}{4}$ and the probability that I buy The Mail is $\frac{1}{4}$. If I buy The Times, the probability that I complete the crossword is $\frac{2}{5}$. If I buy The Mail the probability that I complete the crossword is $\frac{4}{5}$.

a) Find the probability that I complete the crossword on any particular day.

From the tree diagram, P(complete crossword) =

b) If I have completed the crossword, find the probability that I bought The Mail.

 $P(___) = \frac{P(__and __)}{P(__)} =$

Example 2:

0.1% of the population carries a particular faulty gene. A test exists for detecting whether an individual is a carrier of the gene. In people who actually carry the gene, the test provides a positive result with probability 0.9. In people who don't carry the gene, the test provides a positive result with probability 0.01. If someone gives a positive result when tested, find the probability that they actually are a carrier of the gene.

Use the following notation: G = person carries gene P = test is positive for gene

We want to find $P(___] = \frac{P(___ and __]}{P(__]}$			
However, $P(___) = P(___ and ___) + P___ and __) = ___ + ___ = ___$			
Therefore, P() = =			
So there is a verychance of actually having the gene even if the test says that you have it.			
Note: This example highlights the difficulty of detecting rare conditions or diseases.			
RECALL: Multiplication Rule for Independent Events:			
If events A and B are evens, then we can say =			
• The Converse Statement of This Rule Says:			
If = then we can assume A and B are events.			
> USE THIS STATEMENT TOINDEPENDENCE!!!			
☆ Assignment: Conditional Probability Worksheet			

☆ Assignment: p. 446 #71 - 76, p. 452 #79 - 84