\qquad
Ch 13.1: Comparing Two Population Means
EQ: What is the difference between comparing 1-sample means and comparing 2-sample means?
GOAL:

- compare the responses or the characteristics of \qquad

SAMPLE:

- have a representative \qquad
\qquad from \qquad

RESPONSES:

\qquad from other group

CONDITIONS:

- Random: SRS from two \qquad
\qquad measuring
- Independence --- \qquad > 10(\qquad) \qquad > 10(\qquad
- Large Counts --- \square
\square
* Difference of Sample means = \qquad
* Standard error of Difference of sample means = \qquad
> Hypothesis Test: 2-Sample t-test for Means

Ex 1. Do boys have better short term memory than girls? A simple random sample of 200 boys and a simple random sample of 150 girls was administered a short term memory test. The average score for boys was 48.9 with standard deviation 12.96. The girls had an average score of 48.4 with standard deviation 11.85. Is there significance evidence at the 5% level to suggest boys have better short term memory than girls? Note: higher test scores indicate better short term memory.

- State:

H_{0} : the true population mean \qquad for boys and true population mean \qquad girls is the \qquad .
H_{a} : the true population mean \qquad for \qquad is \qquad than the true population mean \qquad for \qquad
Ho: \qquad $=$
or you can write \qquad $=$ \qquad
H_{a} : \qquad or you can write \qquad
Where: $\mu_{B}=$ \qquad

$$
\mu_{G}=
$$

\qquad

- Plan: \qquad -Sample \qquad -test for \qquad
Conditions:
Boys Girls

Random:

Independence:

Large Counts:

- Do:

$$
\mathrm{n}_{\mathrm{B}}=\ldots \quad \bar{x}_{B}=\ldots \quad \mathrm{s}_{\mathrm{B}}=\ldots \quad \mathrm{n}_{G}=\ldots \quad \bar{x}_{G}=\ldots \quad \mathrm{s}_{G}=\ldots \quad \mathrm{df}=\ldots \quad \mathrm{a}=\ldots
$$

\qquad
\qquad $)=P($ \qquad > ___) $=$ \qquad

- Since our p-value of \qquad is \qquad than our significance level \qquad , we have evidence to \qquad the null. We \qquad evidence to conclude it is plausible
that the true population mean \qquad for \qquad is
\qquad than the true population mean \qquad for
\qquad on a short term memory. Our data \qquad statistically significant.
*** NOTE: The conclusion must be written in context of the \qquad hypothesis.

Ex. 2 We want to test the effect of high-protein diets on weight gain. A simple random sample of 12 juvenile rats are fed a high protein diet and their weight gains are given by

$$
1341461141191241611079311312997123
$$

As a comparison, another simple random sample of 12 rats are given a regular (lower protein) diet. Their weight gains are $\quad 701059511810185107132948811297$

Determine if there is significant evidence that the rats fed a high protein diet gain more weight.

- State: H_{0} : the true population mean \qquad for rats fed a \qquad diet and true population mean \qquad rats fed a \qquad diet is the \qquad
H_{a} : the true population mean \qquad for rats fed a \qquad diet is \qquad than true population mean \qquad rats fed a \qquad diet
H_{O} : \qquad $=$
or you can write \qquad $=$ \qquad
H_{a} : \qquad or you can write \qquad

Where $\mu_{H P}=$ \qquad

$$
\mu_{L P}=
$$

\qquad
\qquad

- Plan: \qquad -Sample \qquad -test for \qquad

Random:

Independence:

Large Counts:

- Do:
$n_{H P}=$
$\bar{x}_{H P}=\ldots \quad S_{H P}=$
$n_{L P}=$ \qquad $\bar{x}_{L P}=$ \qquad $S L P=$ \qquad $d f=\quad a=$ \qquad $P(\quad>$ \qquad $)=P($ \qquad $>$ \qquad) $=$ \qquad

- Since our p-value of \qquad is \qquad than our significance level \qquad we have evidence to \qquad the null. We \qquad evidence to conclude it is plausible the true population mean \qquad for rats fed a _ diet is \qquad than true population mean \qquad rats fed a \qquad diet. Our data \qquad statistically significant.
*** NOTE: The conclusion must be written in context of the \qquad hypothesis.
* Assignment: p. 791 \#10; p. 801 \#13(just run once); p. 804 \#19(a); Practice Worksheet \#6

