Ch 13.1: Comparing Two Population Means

EQ: What is the difference between comparing 1-sample means and comparing 2-sample means?

GOAL:

compare the responses or the characteristics of

SAMPLE:

• have a representative _____ from ____

RESPONSES:

_____ from other group

CONDITIONS:

Random: SRS from two _____ measuring

• Independence --- > 10() > 10(

• Large Counts ---

Difference of Sample means = ______

- Standard error of Difference of sample means = _______
- > Hypothesis Test: 2-Sample t-test for Means

$$P\left(t_{----} \frac{(----)-0}{\sqrt{-+--}}\right)$$

Ex 1. Do boys have better short term memory than girls? A simple random sample of 200 boys and a simple random sample of 150 girls was administered a short term memory test. The average score for boys was 48.9 with standard deviation 12.96. The girls had an average score of 48.4 with standard deviation 11.85. Is there significance evidence at the 5% level to suggest boys have better short term memory than girls? Note: higher test scores indicate better short term memory. State: Ho: the true population mean ______ for boys and true population

mean _____ girls is the _____.

Ha: the true population mean _____ for ____ is ____ than the true population mean _____ for ____

 H_0 : ____ = ___ or you can write

 $H_a: \underline{\hspace{1cm}}$ or you can write

Where: μ_{R} = ______

____-Sample ____-test for _____

Conditions: Boys Girls

Random:

Independence:

Large Counts:

Do:

 $n_B = \underline{\qquad} \overline{X}_B = \underline{\qquad} s_B = \underline{\qquad} n_G = \underline{\qquad} \overline{X}_G = \underline{\qquad} s_G = \underline{\qquad} df = \underline{\qquad} a = \underline{\qquad}$

P (____> ____) = P (___> ____) = _____

 Since our p-value 	e ofis	than our signif	icance level	, we have evidence
to	the null. We	ž	_ evidence to co	onclude it is plausible
that the true po	pulation mean		for	is
	_ than the true populat	ion mean		for
on	a short term memory.	Our data	statistic	ally significant.
*** NOTE: The cor	nclusion must be writter	n in context of th	e	hypothesis
12 juvenile rat	st the effect of high-pris are fed a high protei 4 146 114 119 124 1	n diet and their w	eight gains are g	•
•	other simple random sa are 70 105 95 11	•	-	•
Determine if there	is significant evidence	that the rats fed	a high protein d	liet gain more weight.
■ State: Ho: the		for rats fed	a	
	t and true population m t is the	ean	rats fed	d a
	true population mean _			
	t is a		ion mean	rats
160	α	_ uici		
H ₀ : =	_ or you can wri	te		=
Ha:>	or you can wr	rite _	,	·
Where μ_{HP} =				
 μ _{LP} =				
Plan:	-Sampletest for			

Random:

Independence:

Large Counts:

■ Do:

 $n_{HP} = \underline{\qquad} \overline{x}_{HP} = \underline{\qquad} s_{HP} = \underline{\qquad} n_{LP} = \underline{\qquad} \overline{x}_{LP} = \underline{\qquad} s_{LP} = \underline{\qquad} df = \underline{\qquad} \alpha = \underline{\qquad}$

P (_____> _____) = P (____> ____) = _____

Since our p-value of ______is _____ than our significance level _____, we have evidence to ______ the null. We ______ evidence to conclude it is plausible the true population mean ______ for rats fed a ______ than true population mean ______ rats fed a ______ diet. Our data ______ statistically significant.

*** NOTE: The conclusion must be written in context of the _____hypothesis.

❖ Assignment: p. 791 #10; p. 801 #13(just run once); p. 804 #19(a); Practice Worksheet #6