\qquad

EQ:

* Terms to Know:

- Matrix --- a rectangular \qquad of numbers
- Dimensions --- measured by \qquad and \qquad

$$
\left[\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \ldots & a_{1 n} \\
a_{21} & a_{22} & a_{23} & \ldots & a_{2 n} \\
a_{31} & a_{32} & a_{33} & \ldots & a_{3 n} \\
\vdots & \vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & a_{m 3} & \ldots & a_{m n}
\end{array}\right] \leftarrow
$$

\qquad row

- Entry --- \# in a \qquad in a matrix

What do the numbers 2,3 correspond to in the notation a_{23} ?

What value is in the address a_{23} for matrix A ?

$$
A=\left[\begin{array}{cccc}
1 & 3 & 5 & 9 \\
2 & 4 & 6 & 8 \\
7 & 11 & 13 & 15 \\
20 & 22 & 24 & 26
\end{array}\right]
$$

* More Terms to Know:
- Square Matrices --- have the \qquad of rows as columns; \qquad x \qquad
\qquad X \qquad square matrix
- Row Matrix --- matrix with only \qquad row

$$
\left[\begin{array}{llll}
2 & -3 & 0 & 4
\end{array}\right]
$$

\qquad X \qquad matrix
$\left[\begin{array}{cccc}-2 & 4 & 7 & 31 \\ 6 & 9 & 12 & 6 \\ 12 & 11 & 0 & 1 \\ 9 & 10 & 2 & 3\end{array}\right]$

- Column Matrix --- matrix with only__column $\left[\begin{array}{c}2 \\ 4 \\ 5 \\ -3\end{array}\right]$ \qquad X \qquad matrix
- Equal Matrices --- corresponding entries are \qquad

$$
M=\left[\begin{array}{cc}
2 & -3 \\
0 & 6 \\
-1 & 5
\end{array}\right] \quad N=\left[\begin{array}{cc}
2 & -3 \\
0 & 6 \\
-1 & 5
\end{array}\right]
$$

Ex. 1 How can you use this property of equal matrices to solve for x and y ?

$$
\left[\begin{array}{ccc}
2 x+4 & 5 & 1 \\
-2 & -3 y+5 & -4
\end{array}\right]=\left[\begin{array}{ccc}
12 & 5 & 1 \\
-2 & 5 y-3 & -4
\end{array}\right]
$$

* Operations on Matrices
- Add matrices

add \qquad entries
- Subtract matrices
 subtract \qquad entries
- Scalar Multiplication --- multiple a single number called a \qquad across each entry

$$
x\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=[
$$

* Perform the indicated operation on each set of matrices.

Ex. $2 A=\left[\begin{array}{cc}2 & 1 \\ -4 & 3 \\ 2 & -2\end{array}\right], B=\left[\begin{array}{cc}0 & 2 \\ 1 & -3 \\ 3 & -2\end{array}\right]$
Ex. $3 \begin{aligned} & A=\left[\begin{array}{ccc}1 & -4 & 5 \\ 2 & 0 & -8\end{array}\right], B=\left[\begin{array}{ccc}-4 & -2 & 1 \\ 0 & 1 & 5\end{array}\right] \\ & A-B=\end{aligned}$
$A+B=$

Ex. 4 If $M=\left[\begin{array}{lll}5 & 2 & 11 \\ 9 & 4 & 14\end{array}\right]$, find $3 M . \quad 3 M=$

- Assignment: Practice Worksheet \#12-17, 19, 25-29 (odd), 30, 33, 35, 36, 39,

