EQ:

✤ Terms to Know:

• <u>Matrix</u> a rectangular of numbers • <u>Dimensions</u> measured by and $A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \dots & a_{3n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \dots & a_{mn} \end{bmatrix} \leftarrow row$
• Entry # in a in a matrix • Entry # in a in a matrix • a _{i,j} n columns changes
> What do the numbers 2,3 correspond to in the notation a_{23} ?
> What value is in the address \mathbf{a}_{23} for matrix A? A = $\begin{bmatrix} 1 & 3 & 5 & 9 \\ 2 & 4 & 6 & 8 \\ 7 & 11 & 13 & 15 \\ 20 & 22 & 24 & 26 \end{bmatrix}$
✤ More Terms to Know:
 <u>Square Matrices</u> have the of rows as columns; x x square matrix
 <u>Row Matrix</u> matrix with only row [2 -3 0 4] x matrix [2 -3 0 4] x matrix
 <u>Column Matrix</u> matrix with only column

• Equal Matrices --- corresponding entries are _____

$$M = \begin{bmatrix} 2 & -3 \\ 0 & 6 \\ -1 & 5 \end{bmatrix} \qquad N = \begin{bmatrix} 2 & -3 \\ 0 & 6 \\ -1 & 5 \end{bmatrix}$$

Ex. 1 How can you use this property of equal matrices to solve for x and y?

$$\begin{bmatrix} 2x+4 & 5 & 1 \\ -2 & -3y+5 & -4 \end{bmatrix} = \begin{bmatrix} 12 & 5 & 1 \\ -2 & 5y-3 & -4 \end{bmatrix}$$

Operations on Matrices

- Subtract matrices subtract _____ entries
- Scalar Multiplication --- multiple a single number called a ______ across each entry

Perform the indicated operation on each set of matrices.

Ex. 2 $A = \begin{bmatrix} 2 & 1 \\ -4 & 3 \\ 2 & -2 \end{bmatrix}, B = \begin{bmatrix} 0 & 2 \\ 1 & -3 \\ 3 & -2 \end{bmatrix}$ Ex. 3 $A = \begin{bmatrix} 1 & -4 & 5 \\ 2 & 0 & -8 \end{bmatrix}, B = \begin{bmatrix} -4 & -2 & 1 \\ 0 & 1 & 5 \end{bmatrix}$ A - B =

$$A + B =$$

Ex. 4 If
$$M = \begin{bmatrix} 5 & 2 & 11 \\ 9 & 4 & 14 \end{bmatrix}$$
, find 3*M*. 3*M* =

Assignment: Practice Worksheet #12 - 17, 19, 25 - 29 (odd), 30, 33, 35, 36, 39, 42, 43, 45, 46, 50 - 62