\qquad Unit \#6: Graphs and Inverses of Trig Functions

Lesson 5: Graphs of Secant and Cosecant

Complete the following tables. Remember you may convert $\sec (x)$ and $\csc (x)$ into decimal values if needed. Plot each point on the given coordinate plane. Connect continuous points to make a smooth curve. Mark any vertical asymptotes with a dotted vertical line. Do not connect any points across these asymptotes.

Graphing $f(x)=\sec (x)$

x	$y=\sec (x)$	(x, y)
-2π	1	
$-7 \pi / 4$	$\sqrt{ } 2$	$(-7 \pi / 4,1.4)$
$-3 \pi / 2$	Undefined	Vertical asymptote
$-5 \pi / 4$		
$-\pi$		
$-3 \pi / 4$		
$-\pi / 2$		
$-\pi / 4$		
0		
$\pi / 4$		
$\pi / 2$		
$3 \pi / 4$		
π		
$5 \pi / 4$		
$3 \pi / 2$		
$7 \pi / 4$		
2π		

[Hint: Since sec is the reciprocal of cos, graph cos first.]

Facts to know about the graph of $\sec (x)$:

1. The domain is \qquad . Therefore you will have \qquad
\qquad . List at least 4 asymptotes \qquad They will occur every \qquad .
2. The range is \qquad .
3. Secant is symmetric to the \qquad . Therefore secant is an \qquad function.
4. The secant function is periodic. It cycles every \qquad or \qquad ${ }^{\circ}$.
5. Are there any x-intercepts? \qquad
6. Is there a y-intercept? \qquad

Graphing $f(x)=\csc (x)$

x	$\mathrm{y}=\csc (\mathrm{x})$	Ordered pair (x, y)
-2π	undefined	Vertical asymptote
$-7 \pi / 4$	$\sqrt{ } 2$	$(-7 \pi / 4,1.4)$
$-3 \pi / 2$	1	
$-5 \pi / 4$		
$-\pi$		
$-3 \pi / 4$		
$-\pi / 2$		
$-\pi / 4$		
0		
$\pi / 4$		
$\pi / 2$		
$3 \pi / 4$		
π		
$5 \pi / 4$		
$3 \pi / 2$		
$7 \pi / 4$		
2π		

[Hint: Since csc is the reciprocal of sin, graph \sin first.]

Facts to know about the graph of $\csc (x)$:

1. The domain is \qquad . Therefore you will have \qquad . List at least 4 asymptotes \qquad They will occur every \qquad -
2. The range is \qquad .
3. Cosecant is symmetric to the \qquad . Therefore cosecant is an \qquad function.
4. The cosecant function is periodic. It cycles every \qquad or \qquad $\stackrel{\circ}{\circ}$
5. Are there any x-intercepts? \qquad
6. Is there a y-intercept? \qquad

* Hint: When transforming secant and cosecant functions, you want to use the important points from the graph and transform those ordered pairs. Remember you only have to graph a full period of the function. After that you can use patterns to graph more than one.

1. $y=\sec (x+\pi / 4)$

- How is this graph transformed?
- What happens to the x-value?
\qquad
- What about the y-value?
\qquad
- Has the period changed? \qquad
- Have the asymptotes changed?

Sketch a graph of the transformed function

2. $y=\sec (2 x)$

- How is this graph transformed? \qquad
- What happens to the x-value? \qquad
- What about the y-value?
- Has the period changed? \qquad
- Have the asymptotes changed?

Sketch a graph of the transformed function

3. $y=-\csc (x)+1$

- How is this graph transformed? \qquad
- What happens to the x-value? \qquad
- What about the y-value?
- Has the period changed? \qquad
- Have the asymptotes changed?

Sketch a graph of the transformed function

4. $y=1 / 2 \csc (x)$

- How is this graph transformed? \qquad
- What happens to the x-value? \qquad
- What about the y-value? \qquad
- Has the period changed? \qquad
- Have the asymptotes changed?

Sketch a graph of the transformed function

