Accel Precalc Handout: Harmonic Motion Name \qquad
Unit 6: Graphs and Inverses of Trig Functions
Lesson 9: Harmonic Motion MA3A3

EQ:

Simple Harmonic Motion Models: $\quad f(t)=A \sin [B(t-C)]+D \quad f(t)=A \cos [B(t-C)]+D$

Terms:

$|A|=$ \qquad Maximum \qquad from point of \qquad

Equilibrium --- object is at \qquad
\qquad point

Period --- \qquad it takes to complete one cycle

$$
B=\frac{2 \pi}{\square}
$$

Ex. 1 A buoy marking a channel in the harbor bobs up and down as the waves move past. Suppose the buoy moves a total of 6 feet from its high point to its low point and returns to its high point every 10 seconds. Assuming that at $t=0$ the buoy is at its high point and the middle height of the buoy's path is $d=0$, write an equation to describe its motion.

Should the equation be in terms of sine or cosine?

Ex. 2 A weight on a spring bounces a maximum of 8 inches above and below its equilibrium (zero) point. The time for one complete cycle is 2 seconds. Write an equation to describe the motion of this weight, assume the weight is at equilibrium when $t=0$.

Should the equation be in terms of sine or cosine?

Ex. 3 In a particular harbor, high and low tides occur each 12 hours.
Find $f(t)=A \cos [B(t-C)]+D$ where $h(t)$ is the water level, in feet, t hours after midnight given the following:
a) High tide is 10 ft and low tide which occurs at 6 am , is 2 ft
b) High tide is 12 ft and low tide, which occurs at 4 am , is 6 ft .
c) The average water level is 5 ft and high tide is 10 ft , which occurs at 7 pm .

Ex. 4 You have probably noticed that as you ride a Ferris wheel, your distance from the ground varies sinusoidally with time. When the last seat is filled and the Ferris wheel starts, your seat is at the position shown in the figure at the right. Let t be the number of seconds that have elapsed since the Ferris wheel started. You find that it takes you 3 quiddles (a new measure of time) to reach the top, 43 above the ground, and that the wheel makes a revolution once every 8 quiddles. The diameter of the wheel is 40 ft . Your mission, should you choose to accept it, is to do the following:
a) Sketch a graph of this sinusoid.

b) What is the lowest you go as the Ferris wheel turns? Why is this number greater than 0 ?
c) Write the function that models this sinusoid.
d) Predict your height above ground at 6 quiddles, 4.33 quiddles, 9 quiddles, and 0 quiddles.
e) How far from the ground were you when the last seat was filled?

[^0]
[^0]: > Assignment: Worksheet Harmonic Motion

