Accel Precalc	Handout: Graphing Sine and Cosine	Name:
Unit #6: Graphs and	d Inverses of Trig Functions	
Lesson #3: Graphs	of Sine and Cosine	

EQ:

Part I: $f(x) = sin(\theta)$ The ordered pairs will be (______, _____). The domain, θ , will represent _______ measures. The range, $sin(\theta)$, will represent the ______value for sine at θ . Use your UNIT CIRCLE to complete each table then create the graphs.

X	y = sin(x)	(x, y)
0	0	(0,0)
$\pi/6$	0.5	$(\pi/6, 0.5)$
π/4		
π/3		
$\pi/2$		
$2\pi/3$		
3π/4		
5π/6		
π		
7π/6		
5π/4		
4π/3		
3π/2	-1	$(3\pi/2, -1)$
5π/3		
$7\pi/4$		
$11\pi/6$		
2π		

After you fill in the chart it is time to plot your points. Use the ordered pair you found and plot the points on the given coordinate plane. You will have to estimate some. For instance, $\frac{\sqrt{2}}{2}$ is

approximately 0.707. Once you are done plotting your points, use a curve to connect the points

Facts to know about the graph of $sin(\theta)$:

- 1. The domain is from (______). You can put input any _____ measure and find sin(θ)
- 2. The range is from [_____, ____].

3. Sine is symmetric to the ______. Therefore sine is an ______ function.

4. The sine function is periodic. It cycles every _____ or _____°.

5. List at least 3 x-intercepts. _____ 6. The y-intercept is _____

7. The maximum value is _____, it when x = _____(list 2).

8. The minimum value is _____, it occurs when x =_____(list 2)

Part II:	$f(x) = \cos(\theta)$	The ordered pairs will be (,).	The domain, $ heta$, will
represent	meas	sures. The range, cos($ heta$), will represent th	ne	_ value for cosine at θ .

Now graph the function $f(x) = cos(\theta)$. Repeat the steps you performed to graph $f(x) = sin(\theta)$.

Х	y=cos(x)	(x, y)
0	1	(0,1)
π/6		
π/4		
π/3	1/2	$(\pi/3, 0.5)$
$\pi/2$		
2π/3		
3π/4		
5π/6		
π		
7π/6		
5π/4		
4π/3		
$3\pi/2$	0	$(3\pi/2, 0)$
5π/3		
$7\pi/4$		
11π/6		

Facts to know about the graph of $cos(\theta)$:

- 1. The domain is from (_____). You can put input any _____ measure and find cos(θ).
- 2. The range is from [_____, ____].
- 3. Cosine is symmetric to the ______. Therefore cosine is an ______ function.
- 4. The cosine function is periodic. It cycles every _____ or _____°.
- 5. List at least 3 x-intercepts. _____ 6. The y-intercept is _____.
- 7. The maximum value is _____, it when x = _____(list 2).
- 8. The minimum value is _____, it occurs at x =_____(list 2).