Accel Precalc
Review Worksheet: Vectors
Name \qquad
Unit \#8: Extended Trigonometry
I. Use the diagram of vectors u and v to sketch the graph of 1$) 2 v+w$ and 2$) v-3 w$.

1.

2.

II. Find the component form $\langle a, b\rangle$ and magnitude of each vector v.
1.

2.

3. initial $\mathrm{p} \dagger:(-7,3)$
terminal pt: $(4,1)$
4. initial pt: $(-2,-4)$
terminal pt: $(-5,3)$
III. Write vectors \#1-4 in Part II as a position vector in the form $\mathbf{v}=a \mathrm{a}+\mathrm{bj}$.
1.
2.
3.
4.
5. The component form $\langle a, b\rangle$ of a vector represents a vector whose initial point is the \qquad .
IV. Find the magnitude of each vector.

1. $\quad \mathbf{v}=\langle 1,-2\rangle$
2. $v=4 i-3 j$
3. $v=i+j$
4. $\quad v=\left\langle\frac{3}{5}, \frac{4}{5}\right\rangle$
5. $\quad v=\langle 5,3\rangle$
V. Find a unit vector, \mathbf{u}, in the direction of the given vector.
6. $\mathbf{v}=2 i+j$
7. $v=\langle 3,0\rangle$
8. $v=\langle-5,4\rangle$
VI. Find
a) $\mathbf{u}+\boldsymbol{v}$
b) $2 u-v$
c) $3 u-2 v$
9. $\mathbf{u}=\langle 2,-7\rangle$
10. $u=2 i-4 j$
$v=\langle 0,3\rangle$
$v=i+5 j$
11. $u=\langle-3-1\rangle$ $v=\langle-6,0\rangle$
VII. Find the magnitude and the direction angle of each vector. Give angles in decimal degrees to the nearest whole degree.
12. $\quad v=\langle 1,-1\rangle$
13. $v=\langle-3, \sqrt{3}\rangle$
14. $v=\langle-4 \sqrt{2}, 4 \sqrt{2}\rangle$
15. $\quad v=\langle-3,-3\rangle$
16. $\quad v=\langle-8,15\rangle$
17. $\quad v=\langle 6,8\rangle$
18. $v=\langle-5,0\rangle$
19. $v=\langle 0,4\rangle$
VIII. Find the component form $\langle a, b\rangle$ of the vector, v, given its magnitude and direction angle.
20. $\theta=30^{\circ} \quad\|\nu\|=24$
21. $\theta=84.7^{\circ} \quad\|v\|=52.9$
22. $\theta=60^{\circ} \quad\|\nu\|=80$
23. $\theta=45^{\circ}\|v\|=5$
24. $\quad \theta=136^{\circ} \quad\|v\|=7$
25. $\theta=210^{\circ}\|v\|=6$
IX. Find the angle, α, between the vectors.
26. $\quad \mathbf{v}=2 i+j$
$w=-3 i-4 j$
27. $\quad v=i+3 j$
$w=-2 i+2 j$
28. $v=6 i-j$
$w=-4 i-2 j$
X. Vectors \mathbf{v} and \mathbf{w} represent two forces acting at the same point and θ is the smallest positive angle between v and w. Find the magnitude (tenths) and direction angle (whole) of the resultant force.
29. $\mathbf{w}=40 \mathrm{lbs}$.
$v=70 \mathrm{lbs}$
$\theta=45^{\circ}$
30. $w=2 \mathrm{~kg}$
$v=8 \mathrm{~kg}$
$\theta=120^{\circ}$
31. $\mathbf{w}=30 \mathrm{lbs}$
$v=50 \mathrm{lbs}$
$\theta=150^{\circ}$
