Accel Math III Unit 7: Extended Trigonometry Lesson 1: Law of Sines (Part I) MA3A6

EQ: How do you solve triangles that are not "right"?

Recall:

What trig ratios are used to solve right triangles?

Two Methods to Solve "Non-Right Triangles":

- Law of Sines
- Law of Cosines

How can we solve this non-right triangle?

Let's drop down a perpendicular from $\angle B$. Call it h.

We have formed two right triangles.

С

h

The left triangle has the following trig relationship:

sin A = h/c WHY?

 $c \sin A = \frac{h}{h}$

The triangle on the right has the trig relationship:

sin C = h/a WHY? a sin C = h

Using the transitive property:

If $c \sin A = h$ and $h = a \sin C$, then $c \sin A = a \sin C$

Ex. 1 Given side a = 8, $m \angle A = 30^{\circ}$ and $m \angle C = 55^{\circ}$. Find side c to the nearest tenth of an integer.

Ex 2. a = 55, *c* = 20, and $m \angle A$ = 110°. Find the measure of $\angle C$ to the *nearest degree*.

Ex. 3 Given $\angle A = 50^{\circ}$, $\angle B = 65^{\circ}$ and a = 12. Solve the triangle.

∠*C* =

Ex. 4 Solve the triangle if $\angle B = 30^\circ$, $\angle C = 70^\circ$ and b = 10.

c =

When to Use Law of Sines:

case Not suited for Law of Sines

Assignment: Practice Worksheet #1 Part I