Accel Math III
 Unit 7: Extended Trigonometry Lesson 1: Law of Sines (Part I) MA3A6

EQ: How do you solve triangles that are not "right"?

Recall:

What trig ratios are used to solve right triangles?

Two Methods to Solve "Non-Right Triangles":

- Law of Sines
- Law of Cosines

How can we solve this non-right triangle?

Let's drop down a perpendicular from $\angle B$. Call it h.

We have formed two right triangles.

The left triangle has the following trig relationship:
$\sin A=h / c \quad W H Y ?$
$c \sin A=h$

The triangle on the right has the trig relationship:
$\sin C=h / a \quad W H Y ?$
$a \sin C=h$

Using the transitive property:

If $c \sin A=h \quad$ and $\quad h=a \sin C$, then
$c \sin A=a \sin C$

Dividing by ac yields: $\quad \frac{\sin A}{a}=\frac{\sin C}{c}$

Law of Sines:

$$
\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}
$$

Ex. 1 Given side $a=8, m \angle A=30^{\circ}$ and $m \angle C=55^{\circ}$. Find side c to the nearest tenth of an integer.

Ex 2. $a=55, c=20$, and $m \angle A=110^{\circ}$. Find the measure of $\angle C$ to the nearest degree.

Ex. 3 Given $\angle A=50^{\circ}, \angle B=65^{\circ}$ and $a=12$. Solve the triangle.
$\angle A=\quad a=$

$\angle B=\quad b=$
$\angle C=\quad c=$

Ex. 4 Solve the triangle if $\angle B=30^{\circ}, \angle C=70^{\circ}$ and $b=10$.
$\begin{array}{ll}\angle A= & a= \\ \angle B= & b=\end{array}$

$\angle C=$
$c=$

When to Use Law of Sines:

Case 1) 2 sides and 1 angle
Trying to get : angle opposite a known side

© www.mathwarehouse.com

Case 2)1 side and 2 angles
Trying to get:
side opposite a known angle

case Not suited for Law of Sines

Assignment: Practice Worksheet \#1 Part I

