Answers Inference Practice Worksheet \#3

1. a) State: We will create a 99% confidence interval for a 1 -sample proportion to estimate the true population proportion of shoppers at a specific mall who spend more than $\$ 25$.

Plan: Parameter: $\quad p=$ the true population proportion of shoppers at a specific mall who spend more than $\$ 25$
Random: The problem states a simple random sample of shoppers was selected.

Independence: population of all shoppers at this mall $\geq 10(550)$ Condition met for independence
Large Counts: $n p \geq 10 \quad 352 \geq 10 \quad n q \geq 10 \quad 198 \geq 10 \quad$ Sample size large enough to consider

Do:

$\hat{p}=0.64 \quad \hat{q}=0.36 \quad n=550 \quad s e=\sqrt{\frac{(.64)(.36)}{550}} \quad z^{*}=2.576 \quad C L=.99$
$.64 \pm 2.576\left(\sqrt{\frac{(.64)(.36)}{550}}\right)$
We are 99% confident the true population proportion of shoppers at this mall who spent more than $\$ 25$ is in the interval 58.7% to 69.3% for a sample size of 550 shoppers.
2. a) State: We will create a 95% confidence interval for a 1 -sample proportion to estimate the true population proportion of machine parts damaged in shipment.

Plan: Parameter: $\quad p=$ the true population proportion of machine parts damaged in shipment
Random: The problem states a random sample of machine parts was selected.

Independence: population of all machine parts in shipment $\geq 10(225)$ Condition met for independence

Large Counts: $n p \geq 10 \quad 18 \geq 10 \quad n q \geq 10 \quad 207 \geq 10 \quad$ Sample size large enough to consider approximately Normal.

Do:
$\hat{p}=0.08 \quad \hat{q}=0.92 \quad n=225 \quad$ se $=\sqrt{\frac{(.08)(.92)}{225}} \quad z^{*}=1.96 \quad C L=.95$
$.08 \pm 1.96\left(\sqrt{\frac{(.08)(.92)}{225}}\right)$
We are 99% confident the true population proportion of machine parts damaged in the shipment is in the interval 4.5% to 11.6% for a sample size of 225 machine parts.
3. a) State: We will create a 95% confidence interval for a 1 -sample mean to estimate the true population mean number of ounces a bottling machine inserts into each bottle it fills.

Plan: Parameter: $\quad \mu=$ the true population mean number of ounces a bottling machine inserts into each bottle it fills.

Random: The problem states a random sample of bottles was selected.
Independence: population of all bottles $\geq 10(36)$ Condition met for independence

Large Counts: $n=36 \quad 36 \geq 30 \quad$| CLT states that the sample size is large enough to assume |
| :--- |
| approximate Normal distribution. |

Do: $\quad \bar{x}=16.1 \quad s=0.12 \quad n=36 \quad d f=35 \quad C L=.95 \quad t^{*}=2.042 \quad 16.1 \pm 2.042\left(\frac{0.12}{\sqrt{36}}\right)$
We are 95% confident the true population mean number of ounces placed in bottles by a machine is in the interval 16.093 oz and 16.107 oz for a sample size of 36 bottles.
b) $\bar{x}=16.1 \quad s=0.12 \quad n=36$
$d f=35$
$C L=.99 \quad t^{*}=2.75$
$16.1 \pm 2.75\left(\frac{0.12}{\sqrt{36}}\right)$
(16.091, 16.109)

We are 99% confident the true population mean number of ounces placed in bottles by a machine is in the interval 16.091 oz and 16.109 oz for a sample size of 36 bottles.
c) The confidence interval at 95% is smaller than the confidence interval at 99%. The critical value, 2.042 , at 95% will give a smaller margin of error than the critical value, 2.75 , at 99%. The larger confidence level results in a larger, less specific interval.
4. a) State: With what confidence level can it be asserted that $83.2 \% \pm 3 \%$ of adults in the U.S. support the decision to go to war in Iraq?

Plan: Parameter: $\quad p=$ the true population proportion of adults in the U.S. who support going to war in Iraq
Random: The problem does not state a random sample adults was surveyed. No reason to assume the adults selected in the telephone survey were not representative of the population of all U.S. adults.

Independence: population of all U.S. adults $\geq 10(1000)$ Condition met for independence
Large Counts: $n p \geq 10 \quad 832 \geq 10 \quad n q \geq 10 \quad 168 \geq 10 \quad$ Sample size large enough to consider approximately Normal.

Do:

0.55% lies in EACH tail, so the confidence interval is 98.89%. Therefore the confidence interval for $83.2 \% \pm 3 \%$ is a 98.89% confidence interval estimate for the true population proportion of all U.S. adults who support the war in Iraq for a sample size of 1000 U.S. adults.
b) $83.2 \%+3 \%=86.2 \%$
(0.862)(191 million) $=165$ million
$83.2 \%-3 \%=81.2 \%$
(0.812)(191 million) $=153$ million

We are 98.89% confident that the true population number of U.S. adults who support the war in Iraq is in the interval 153 million to 165 million for a sample size of 1000 U.S. adults.
5. a) State: We will create a 90% confidence interval for a 1-sample proportion to estimate the true population proportion of unemployed men in the U.S. who are married.

Plan: Parameter $p=$ the true population proportion of men in the U.S. who are not married
Random: The problem does not state a random sample of U.S. unemployed men was surveyed. No reason to assume the men selected were not representative of the population of all unemployed U.S. males.

Independence: population of all unemployed U.S. males ≥ 10 (3499) Condition met for independence
Large Counts: $n p \geq 10 \quad 1356 \geq 10 \quad n q \geq 10 \quad 2143 \geq 10$

Sample size large enough to consider approximately Normal.

Do:

$\hat{p}=0.3875 \quad \hat{q}=0.6125 \quad n=3499 \quad$ se $=\sqrt{\frac{(.3875)(.6125)}{3499}} \quad z^{*}=1.645 \quad C L=.90$
$.3875 \pm 1.645\left(\sqrt{\frac{(.3875)(.6125)}{3455}}\right)$
(0.37399, 0.40109)

We are 90% confident the true population proportion of unemployed males who are not married is in the interval 37.4% to 40.1% for a sample size of 3455 unemployed males.
6. a) State: We will create a 90% confidence interval for a 1 -sample mean to estimate the true population mean life expectancy for batteries at a specific manufacturing plant.

Plan: Parameter: $\quad \mu=$ the true population mean life expectancy for batteries at a specific manufacturing plant Random: The problem states a random sample of batteries was selected.

Independence: population of all batteries produced at this plant $\geq 10(64)$ Condition met for independence

Large Counts: $n=64 \quad 64 \geq 30$ CLT states that the sample size is large enough to assume approximate Normal distribution.

Do:
$\bar{x}=12.35 \quad s=2.4 \quad n=64 \quad d f=63 \quad C L=.90 \quad t^{*}=1.671 \quad 12.35 \pm 1.671\left(\frac{2.4}{\sqrt{64}}\right)$
We are 90% confident the true population mean life expectancy for batteries at a particular manufacturing plant is in the interval 12.287 months and 12.413 months for a sample size of 64 batteries.
b) State: We will create a 90% confidence interval for a 1-sample mean to estimate the true population mean life expectancy for batteries at a specific manufacturing plant.

Plan: Parameter: $\quad \mu=$ the true population mean life expectancy for batteries at a specific manufacturing plant

Random: The problem states a random sample of batteries was selected.

Independence: population of all batteries produced at this plant $\geq 10(100)$ Condition met for independence 1
Large Counts: $n=100 \quad 100 \geq 30$ CLT states that the sample size is large enough to assume approximate Normal distribution.

Do:

$$
\begin{equation*}
\bar{x}=12.35 \quad s=2.4 \quad n=100 \quad d f=99 \quad C L=.90 \quad t^{*}=1.66 \quad 12.35 \pm 1.66\left(\frac{2.4}{\sqrt{64}}\right) \tag{11.952,12.748}
\end{equation*}
$$

We are 90% confident the true population mean life expectancy for batteries at a particular manufacturing plant is in the interval 11.952 months and 12.748 months for a sample size of 100 batteries.
c) Increased sample size shortens the confidence interval. Margin of error is smaller.
7. Consider how large $\sqrt{p(1-p)}$ can be:

$p:$	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
$\sqrt{p(1-p)}:$	0.3	0.4	0.458	0.4899	0.5	0.4899	0.458	0.4	0.3

Therefore $\sqrt{p(1-p)}$ has the largest value when $p=0.5$. Therefore se is largest at $\sqrt{\frac{p(1-p)}{n}}=\sqrt{\frac{(0.5)(0.5)}{n}}$. This gives the largest margin of error.
$z^{*}($ se $) \leq m e \quad$ Conf Level $=.96 \quad z^{*}=2.054$
$2.054\left(\sqrt{\frac{(0.5)(0.5)}{n}}\right) \leq \pm 0.03 \quad \frac{2.054(0.5)}{\sqrt{n}} \leq \pm 0.03 \quad 2.054(0.5) \leq \pm 0.03 \sqrt{n}$
$\frac{2.054(0.5)}{0.03} \leq \sqrt{n} \quad \sqrt{n} \geq 34.233 \quad n \geq 1171$
One would need a sample size of at least 1171 fish to obtain a margin of error of $\pm 3 \%$ at a 96% confidence level.

8. a)

$$
\begin{aligned}
& z *(\text { se }) \leq m e \quad \text { Conf Level }=.99 \quad z^{*}=2.58 \\
& 2.58\left(\sqrt{\frac{(0.5)(0.5)}{n}}\right) \leq \pm 0.06 \quad \frac{2.58(0.5)}{\sqrt{n}} \leq \pm 0.06 \quad 2.58(0.5) \leq \pm 0.06 \sqrt{n} \\
& \frac{2.58(0.5)}{0.06} \leq \sqrt{n} \quad \sqrt{n} \geq 21.5
\end{aligned}
$$

One would need a sample size of at least 463 executives to obtain a margin of error of $\pm 6 \%$ at a 99% confidence level.
b)

$$
\begin{aligned}
& z^{*}(\text { se }) \leq m e \quad \text { Conf Level }=.99 \quad z^{*}=2.58 \\
& 2.58\left(\sqrt{\frac{(0.5)(0.5)}{n}}\right) \leq \pm 0.03 \quad \frac{2.58(0.5)}{\sqrt{n}} \leq \pm 0.03 \\
& \frac{2.58(0.5)}{0.03} \leq \sqrt{n} \quad \sqrt{n} \geq 43
\end{aligned}
$$

One would need a sample size of at least 1849 executives to obtain a margin of error of $\pm 3 \%$ at a 99% confidence level.
c)

$$
\begin{aligned}
& z *(\text { se }) \leq m e \quad \text { Conf Level }=.99 \quad z^{*}=2.58 \\
& 2.58\left(\sqrt{\frac{(0.5)(0.5)}{n}}\right) \leq \pm 0.02 \quad \frac{2.58(0.5)}{\sqrt{n}} \leq \pm 0.02 \quad 2.58(0.5) \leq \pm 0.02 \sqrt{n} \\
& \frac{2.58(0.5)}{0.02} \leq \sqrt{n} \quad \sqrt{n} \geq 64.5
\end{aligned}
$$

One would need a sample size of at least 4161 executives to obtain a margin of error of $\pm 2 \%$ at a 99% confidence level.

$$
\text { d) } m e=2.58\left(\frac{1}{2}\right) \sqrt{\frac{(.5)(.5)}{n}} \quad m e=2.58 \sqrt{\frac{(.5)(.5)}{4 n}}
$$

In order to cut a confidence interval in half, you would need to quadruple the sample size as seen in parts a) and b). The sample size of approximately 463 executives gave a margin of error of 6% and a sample size of approximately 1849 executives gave a margin of error of 3%.

To reduce a confidence interval to a third of the origin, the sample size would need to increase ninefold as seen in parts a) and c). The sample size of approximately 463 executives gave a margin of error of 6% and a sample size of approximately 4161 executives gave a margin of error of 2%.

