Answers In Class Assignment \& HW Section 4.1

I. Create scatterplot, regression statistics, and residual plots
**Place freq in L1, position in L2, $\ln ($ freq)in L3, $\operatorname{Ln}($ position $)$ in L4

1. Results for freq vs position

Nonlinear trend

High r and r^{2}

Pattern in residual plot
2. Results for In (freq) vs position

Linear trend

Higher r and r^{2}

No pattern in residual plot

Exponential Regression Model of In (freq) vs position
pred $\ln ($ freq $)=6.03+0.0578$ (position)
pred $($ freq $)=e^{(6.03+0.0578(\text { position }))}$
II. Predict the frequency of the C note that is one octave higher (position 16) than the C note with frequency 52.025 Hz .

Prediction:

$$
\operatorname{pred}(\text { freq })=\boldsymbol{e}^{(16)} \approx 1048.17 \mathrm{~Hz}
$$

Results for p. 276 \#5
Exp Regression: In (light intensity) vs depth

Use TRACE to see size of residuals. They are VERY SMALL!
pred \ln (light intensity) $=6.79-0.333$ (depth)
pred (light intensity) $=\mathrm{e}^{(6.79-0.333(\text { depth }))}$

Power Regression: In (light intensity) vs In (depth)

pred \ln (light intensity) $=9.30-2.53 \ln$ (depth)
pred (light intensity) $=\mathrm{e}^{(9.30-2.53 \ln (\text { depth }))}$

Prediction: Make statements comparing scatterplots, correlation coefficients, coefficient of determinations, and residual plots of

In (light intensity) vs depth and In (light intensity) vs \ln (depth)
Exponential model is the better of the two choices.

$$
\begin{aligned}
& \operatorname{pred}(\text { freq })=e^{(6.79-0.333(\text { depth }))} \\
& \operatorname{pred}(\text { freq })=e^{(6.79-0.333(22))} \\
& \operatorname{pred}(\text { freq })=e^{-0.536}=0.5851 \text { lumens }
\end{aligned}
$$

Not surprising; the residual at 22 m is very small; this would be expected since, based on our statistical output, our model provided an excellent fit.

Results for p. 285 \#11
Exponential Regression: In (life span) vs (weight)

pred \ln (life span) $=2.38+0.00006$ (weight)
pred (life span) $=\mathrm{e}^{(2.38+0.00006(\text { weight }))}$

Power Regression: In (life span) vs In (weight)

pred $\ln ($ lifespan $)=1.74+0.213 \ln$ (weight)
pred $($ lifespan $)=e^{(1.74+0.213 \ln (\text { weight }))}$

Prediction: Make statements comparing scatterplots, correlation coefficients, coefficient of determinations, and residual plots of In (life span) vs weight and \ln (life span) vs \ln (weight)

Power model is the better of the two choices.

$$
\begin{aligned}
& \text { pred }(\text { lifespan })=\mathrm{e}^{(1.74+0.213 \ln (\text { weight }))} \\
& \text { pred }(\text { lifespan })=\mathrm{e}^{(1.74+0.213 \ln (65))} \\
& \text { pred }(\text { lifespan })=\mathrm{e}^{2.629}=13.86 \mathrm{yr}
\end{aligned}
$$

