
Ch 12.1 Hypothesis Tests for Means

Sometimes an inference method (either confidence interval or hypothesis testing) uses **two-pieces of data** to obtain **one sample**. This *t*-test compares one set of measurements with a second set of measurements. The **mean** is calculated from the **difference** in the two-pieces of data. This type of problem is often referred to as "**Matched Pairs**". This matching can be achieved by

- I. taking two measurements from the same subject.
- II. using naturally occurring pairs such as twins, or husbands and wives.
- III. matching subjects by some observable characteristic such as age.

Ex: If you examine the fingers of your left hand you will see that the "ring finger" is often a little longer than the "index finger". We took a simple random sample of adult females and measured the length of both fingers on their left hand. The results (cm) are in the table below. Assuming the distribution of finger lengths is normal, is there **significant evidence** to conclude that the ring finger will be **longer** than the index finger on an adult female's left hand?

Subject	Ring Finger	Index Finger	Difference
1	9.6	8.9	
2	10.7	10.5	
3	10.2	9.3	
4	9.5	9.5	
5	9.7	8.9	
6	9.5	8.9	
7	9.7	9.0	
8	11.0	10.1	
9	9.3	9.2	
10	9.8	9.5	

• State:

 H_0 : the true mean _____ in length of ring finger and index finger on an adult female's left hand is _____

Ha: the true mean _____ in length of ring finger and index finger on an adult female's left hand is _____

 H_o : μ_{diff} = _____

 H_a : μ_{diff} _____

•	Plan: μ_{diff} = the true mean	_ in length of ring finger and index finger on an adult		
female's left hand				
	sample test for	_		
•	Conditions:			
	Randomness			
	Independence			
	Large Counts			
	Calculations:			
	n = df = \bar{x} = se =	α =		
	P() =			

Since the p-value of ______ is _____ than the significance level a = _____,

we have evidence to _____ the null hypothesis. We can **possibly** conclude that the
_____ in length of the ring finger and the length of the index finger on
an adult female's left hand is ______ for a sample size of _____.

Conclusion: