Test	Conditions	Null Hypothesis	Test Statistic	Confidence Interval
One-Sample t-test (for a population mean)	1.) Random Sample 2.) 10% Condition: $n<\frac{1}{10} \mathrm{~N}$ 3.) Normality: Population is normal, or $\mathrm{n} \geq 30$ by CLT or distribution not overly skewed, no outliers	$\mathrm{H}_{0}: \mu=\mu_{\mathrm{o}}$	$\begin{aligned} t & =\frac{\bar{x}-\mu_{o}}{\frac{s}{\sqrt{n}}} \\ \mathrm{df} & =n-1 \end{aligned}$	$\bar{x} \pm t_{n-1}^{*} \frac{s}{\cdot \sqrt{n}}$
Matched Pair ttest (for a difference in 2 dependent sample means)	1.) Random Sample or Assignment 2.) 10% Condition: $n<\frac{1}{10} N$ 3.) Samples are DEPENDENT (Matched) 4.) Normality: $\mathrm{n} \geq 30$ by CLT or distribution of differences are not overly skewed, no outliers (n is \# of pairs)	$H_{0}: \mu_{d}=0$	$\begin{aligned} & t=\frac{\bar{x}_{d}-0}{\frac{s_{d}}{\sqrt{n}}} \\ & \mathrm{df}=n-1 \\ &(\mathbf{n} \text { is } \# \text { of pairs }) \end{aligned}$	$\bar{x}_{d} \pm t_{n-1}^{*} \frac{s_{d}}{\sqrt{n}}$ *Subtract the lists of data to create 1 -list before you start*
Two-Sample t-test (for a difference in 2 population means) DO NOT POOL	1.) Random Sample or Assignment 2.) 10% Condition: BOTH $n<\frac{1}{10} N$ 3.) Samples are Independent 4.) Normality: BOTH Populations are normal, or BOTH $n_{1}, n_{2} \geq 30$ by CLT or BOTH distributions not overly skewed, no outliers	$\begin{gathered} H_{0}: \mu_{1}=\mu_{2} \\ \text { or } \\ H_{0}: \mu_{1}-\mu_{2}=0 \end{gathered}$	$\begin{aligned} & t=\frac{\bar{x}_{1}-\bar{x}_{2}}{\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}} \\ & \text { df }=\text { smaller of } n_{1}-1 \\ & \text { or } n_{2}-1 \\ & \text { or calculator df } \end{aligned}$	$\left(\bar{x}_{1}-\bar{x}_{2}\right) \pm t_{n-1}^{*} \sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}$
One Proportion ztest (for a population proportion)	1.) Random Sample 2.) 10% Condition: $n<\frac{1}{10} \mathrm{~N}$ 3.) Normality*- Large Counts $n p_{0} \geq 10 \quad n\left(1-p_{0}\right) \geq 10$ *Note: Use p_{0} for the test and \hat{p} for the interval	$H_{0}: p=p_{0}$	$z=\frac{\hat{p}-p_{0}}{\sqrt{\frac{p_{0}\left(1-p_{0}\right)}{n}}}$	$\hat{p} \pm z^{*} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$ Note: The condition for CI for Normality-Large Counts is $n \hat{p} \geq 10$ and $n(1-\hat{p}) \geq 10$
Two Proportion ztest (for a difference in 2 population proportions)	1.) Random Sample or Assignment 2.) 10% Condition: BOTH $n<\frac{1}{10} N$ 3.) Samples are Independent 4.) Normality*- Large Counts $\begin{array}{ll} n_{1} p_{c} \geq 5 & n_{1}\left(1-p_{c}\right) \geq 5 \\ n_{2} p_{c} \geq 5 & n_{2}\left(1-p_{c}\right) \geq 5 \end{array}$ *Note: Use p_{c} for the test and \hat{p}_{1}, \hat{p}_{2} for the interval	$H_{0}: p_{1}=p_{2}$ or $H_{0}: p_{1}-p_{2}=0$	$z=\frac{\hat{p}_{1}-\hat{p}_{2}}{\sqrt{\frac{p_{c}\left(1-p_{c}\right)}{n_{1}}+\frac{p_{c}\left(1-p_{c}\right)}{n_{2}}}}$ Note: $p_{c}=\frac{x_{1}+x_{2}}{n_{1}+n_{2}}$	$\left(\hat{p}_{1}-\hat{p}_{2}\right) \pm z^{*} \sqrt{\frac{\hat{p}_{1}\left(1-\hat{p}_{1}\right)}{n_{1}}+\frac{\hat{p}_{2}\left(1-\hat{p}_{2}\right)}{n_{2}}}$ Note: The condition for CI for Normality-Large Counts is $\begin{array}{ll} n_{1} \hat{p}_{1} \geq 5 & n_{1}\left(1-\hat{p}_{1}\right) \geq 5 \\ n_{2} \hat{p}_{2} \geq 5 & n_{2}\left(1-\hat{p}_{2}\right) \geq 5 \end{array}$

Note: NO 10\% CONDITION WITH RANDOM ASSIGNMENT!!!

Why are the conditions important?

RANDOM - Best chance of getting a representative sample from the population to make conclusions from.
10% - Our sampling is without replacement and thus "dependent". With less than 10% of the population in our sample. it creates an "essentially independent" environment and makes our standard error valid.

NORMAL/LARGE COUNTS - Guarantees that the sampling distribution will be approx. normal and thus our calculations will be valid.

Name That Significance Test

