Inference Formulas	&	Conditions
--------------------	---	------------

Test	Conditions	Null Hypothesis	Test Statistic	Confidence Interval
One-Sample t-test (for a population mean)	 Random Sample 10 % Condition: n < 1/10 N Normality: Population is normal, or n ≥ 30 by CLT or distribution not overly skewed, no outliers 	H_{o} : $\mu = \mu_{o}$	$t = \frac{\bar{x} - \mu_o}{\frac{s}{\sqrt{n}}}$ $df = n - 1$	$\overline{x} \pm t_{n-1}^* \frac{S}{\sqrt{n}}$
Matched Pair t- test (for a difference in 2 dependent sample means)	 1.) Random Sample or Assignment 2.) 10 % Condition: n < 1/10 N 3.) Samples are DEPENDENT (Matched) 4.) Normality: n ≥ 30 by CLT or distribution of differences are not overly skewed, no outliers (n is # of pairs) 	$H_0: \mu_d = 0$	$t = \frac{\overline{x}_d - 0}{\frac{s_d}{\sqrt{n}}}$ df = n - 1 (n is # of pairs)	$\overline{x}_{d} \pm t_{n-1}^{*} \frac{S_{d}}{\sqrt{n}}$ *Subtract the lists of data to create 1-list before you start*
Two-Sample t-test (for a difference in 2 population means)DO NOT POOL	1.) Random Sample or Assignment 2.) 10 % Condition: BOTH $n < \frac{1}{10}N$ 3.) Samples are Independent 4.) Normality: BOTH Populations are normal, or BOTH $n_1, n_2 \ge 30$ by CLT or BOTH distributions not overly skewed, no outliers	$H_0: \mu_1 = \mu_2$ or $H_0: \mu_1 - \mu_2 = 0$	$t = \frac{\overline{x}_1 - \overline{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$ df = smaller of $n_1 - 1$ or $n_2 - 1$ or calculator df	$(\overline{x}_1 - \overline{x}_2) \pm t_{n-1}^* \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$
One Proportion z- test (for a population proportion)	1.) Random Sample 2.) 10 % Condition: $n < \frac{1}{10}N$ 3.) Normality*- Large Counts $np_0 \ge 10$ $n(1-p_0) \ge 10$ *Note: Use p_0 for the test and \hat{p} for the interval	$H_0: p = p_0$	$z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$	$\hat{p} \pm z^* \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$ Note: The condition for CI for Normality-Large Counts is $n\hat{p} \ge 10$ and $n(1-\hat{p}) \ge 10$
Two Proportion z- test (for a difference in 2 population proportions)	1.) Random Sample or Assignment 2.) 10 % Condition: BOTH $n < \frac{1}{10}N$ 3.) Samples are Independent 4.) Normality*- Large Counts $n_1p_c \ge 5$ $n_1(1-p_c) \ge 5$ $n_2p_c \ge 5$ $n_2(1-p_c) \ge 5$ *Note: Use p_c for the test and \hat{p}_1, \hat{p}_2 for the interval	$H_0: p_1 = p_2$ or $H_0: p_1 - p_2 = 0$	$z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\frac{p_c(1 - p_c)}{n_1} + \frac{p_c(1 - p_c)}{n_2}}}$ Note: $p_c = \frac{x_1 + x_2}{n_1 + n_2}$	$ (\hat{p}_{1} - \hat{p}_{2}) \pm z^{*} \sqrt{\frac{\hat{p}_{1}(1 - \hat{p}_{1})}{n_{1}} + \frac{\hat{p}_{2}(1 - \hat{p}_{2})}{n_{2}}} $ Note: The condition for CI for Normality-Large Counts is $n_{1}\hat{p}_{1} \ge 5$ $n_{1}(1 - \hat{p}_{1}) \ge 5$ $n_{2}\hat{p}_{2} \ge 5$ $n_{2}(1 - \hat{p}_{2}) \ge 5$

Note: NO 10% CONDITION WITH RANDOM ASSIGNMENT!!!

Why are the conditions important?

RANDOM – Best chance of getting a representative sample from the population to make conclusions from.

10% - Our sampling is without replacement and thus "dependent". With less than 10% of the population in our sample. it creates an "essentially independent" environment and makes our standard error valid.

NORMAL/LARGE COUNTS – Guarantees that the sampling distribution will be approx. normal and thus our calculations will be valid.

