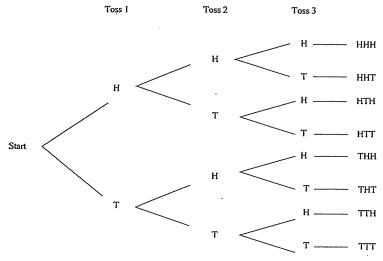

HW p416-417

6.29 (a) $S = \{\text{germinates, fails to grow}\}$. (b) The survival time could be measured in days, weeks, months, or years. $S = \{\text{nonnegative integers}\}$. (c) $S = \{A, B, C, D, F\}$. (d) Using Y for "yes (shot made)" and N for "no (shot missed)," $S = \{\text{YYYY, NNNN, YYYN, NNNY, YYNY, NNYN, NYYY, NNYN, NYYY, NNYN, NYYY, NNYN, NYYY, NNYN, NYYYN, NYYN, NYY$


6.30 (a) $S = \{\text{all numbers between 0 and 24 hours}\}$. (b) $S = \{0, 1, 2, ..., 11000\}$. (c) $S = \{0, 1, 2, ..., 12\}$. (d) $S = \{\text{all numbers greater than or equal to 0}\}$, or $S = \{0, 0.01, 0.02, 0.03, ...\}$. (e) $S = \{\text{all positive and negative numbers}\}$. Note that the rats can lose weight.

6.31 $S = \{\text{all numbers between } \underline{\hspace{0.5cm}} \text{ and } \underline{\hspace{0.5cm}} \}$ The numbers in the blanks may vary. Table 1.10 has values from 86 and 195 cal; the range of values should include at least those numbers. Some students may play it safe and say $S = \{\text{all numbers greater than 0}\}$

6.32 (a) If two coins are tossed, then by the multiplication principle, there are $2 \times 2 = 4$ possible outcomes. The outcomes are illustrated in the following tree diagram:

The sample space is $S = \{HH, HT, TH, TT\}$. (b) If three coins are tossed, then there are $2 \times 2 \times 2 = 8$ possible outcomes. The outcomes are illustrated in the following tree diagram:

The sample space is $S = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}$. (c) If five coins are tossed, then there are $2\times2\times2\times2\times2=32$ possible outcomes, each of which consists of a string of five letters that may be H's or T's. The sample space is $S = \{HHHHH, HHHHT, HHHTH, HHTHH, HHHHTH, HHTHH, HHHHTH, HHTHH, HHHHTT, HHTTHH, HTTHHH, HTHHHT, HHTTT, HTHTT, HTHTH, HTTHH, TTHHHH, THHHHT, THHHH, THHHHT, THHHH, THHHHT, THTHH, TTHHHH, TTHHHH, TTHHHH, TTHHHH, TTHHHH, TTHHHT, TTTTTT,$

6.33 (a) $10\times10\times10\times10=10^4=10,000$. (b) $10\times9\times8\times7=5,040$. (c) There are 10,000 four-digit tags, 1,000 three-digit tags, 100 two-digit tags, and 10 one-digit tags, for a total of 11,110 license tags.

6.35	(a) Number of ways	Sum	Outcomes
	1	2	(1,1)
	2 '	3	(1, 2) (2, 1)
	3	4	(1,3)(2,2)(3,1)
	4	5	(1, 4) (2, 3) (3, 2) (4, 1)
	5	6	(1, 5) (2, 4) (3, 3) (4, 2) (5, 1)
	6	7	(1, 6) (2, 5) (3, 4) (4, 3) (5, 2) (6, 1)
	5	8	(2, 6) (3, 5) (4, 4) (5, 3) (6, 2)
•	4	9	(3, 6) (4, 5) (5, 4) (6, 3)
	3	10	(4, 6) (5, 5) (6, 4)
	2	11	(5, 6) (6, 5)
	1	12	(6, 6)

- (b) 18. (c) There are 4 ways to get a sum of 5 and 5 ways to get a sum of 8.
- (d) Answers will vary but might include:
 - The "number of ways" increases by 1 until "sum = 7" and then decreases by 1.
 - The "number of ways" is symmetrical about "sum = 7."
 - The outcomes show a symmetrical pattern, very similar to stemplots for symmetric distributions.
 - Odd sums occur in an even number of ways and even sums occur in an odd number of ways.
 - The possible values of the sum are not equally likely, even though all 36 outcomes are equally likely.

6.36 (a) 26. (b) 13. (c) 1. (d) 16. (e) 3.