BAT to Lists for AP Stat Course Objectives

I. Creating and Describing Graphs

- accurately create dot plot, bar graph (includes stacked and grouped), stem and leaf (don't forget "key"), histogram (remember to label "bins" correctly --- continuous values --- right number in next bin; discrete values centered under bin), modified box plot (use "*" for outliers) TITLE \& LABEL!!
- interpret ogives (find certain percentiles)
- interpret and compare graphs in context (no pronouns)
- determine outliers algebraically and from standard deviations
- describe using SOCS or CUSS (no pronouns, use \#"s and "greater", "less" not "while")
- distinguish BIAS from VARIABILITY (think about target and buckshot --- bias is "aim from center", variability is "spread apart")

II. Sampling Techniques \& Experimental Design

- state difference between sampling and census
- identify populations and samples
- discuss biased (systematically favors certain outcomes) sampling methods: voluntary, convenience, quota, undercoverage (not included), nonresponse(choose to not respond), response (wording, social desirability)
- discuss clustering and stratifying
- discuss difference between observational study and experimental study
- outline an experimental study --- bullets or paragraph form (must), diagram (optional); assign random digits correctly; block correctly with reason
- know subjects, treatments, levels, factors, placebo effect, blind, double blind
- purpose of control group, randomization, replication
- randomized comparative design vs blocking vs matched pairs

III. Probability Distributions: Binomial \& Normal Distributions; Combining Random Variables

- create and interpret probability distribution table (2 criteria)
- know if data is discrete or continuous
- calculate expected value and standard deviation (using lists) from probability distribution table (use correct stand dev in calc)
- distinguish counts from relative frequency
- distinguish relative frequency from cumulative relative frequency
- distinguish Binomial from "wait time" (4 conditions for Binomial)
- write Binomial distribution notation correctly
- calculate probability for Binomial distribution long hand and with calculator
- calculate probability for wait time problem
- use binompdf and binomcdf correctly (difference? arguments?)
- calculate the complement using binomcdf (what X value is last arg?)
- state \%'s for Empirical Rule
- write Normal distribution notation correctly (both when given and when calculated from Binomial distribution)
- calculate probability for single observation and for sampling distribution (changes n value in standard error)
- discuss mutually exclusive, disjoint, independent events
- calculate union of 2 mutually exclusive and 2 non-mutually exclusive events
- calculate intersection of 2 independent events
- know to use a probability statement to determine if 2 events are independent
- determine condition probability from given probability, contingency table, or tree diagram
- create tree diagram; calculate intersection from values on tree
- interpret (in context) all values shown on a tree diagram
- use a tree you created for $P(A \mid B)$ to calculate $P(B \mid A)$
- given $\mathbf{Z}=\mathbf{X}+\mathbf{Y}$, calculate $\mu_{Z}=\mu_{X+Y}=\mu_{X}+\mu_{y}$
- given $\mathbf{Z}=\mathbf{X}+\mathbf{Y}$, where \mathbf{X} and \mathbf{Y} are independent events, calculate $\sigma_{Z}=\sqrt{\sigma^{2}+\sigma^{2}}$
- given $\mathbf{H}=a+b x$, calculate $\mu_{H}=\mu_{a+b x}=a+b \mu_{x}$
- given $\mathrm{H}=a+b x$, calculate $\sigma_{H}=\mu_{a+b x}=b^{2} \sigma^{2}{ }_{x}$

IV. Inference

- follow template (or use PANIC) to create and interpret confidence intervals for $1 \& 2$ sample means and proportions
- follow template (or use PHANTOMS) to run and draw conclusions from hypothesis tests
- input data in calc lists and use $1^{\text {st }}$ var stats if sample statistics not given for means problem
- create and interpret boxplot or NPP if CLT not applicable
- differentiate between matched pairs and 2 sample test
- correctly name appropriate confidence interval or test
- state and check necessary assumptions (conditions)
- determine sample size needed for particular margin of error (use p^{*} if sample statistics not given for proportions)
- discuss how sample size impacts width of confidence interval
- define meaning of " 95% confident" (see Test CH 9 \& 10 mult choice and several take home quizzes for correct verbage)
- define all necessary parameters using correct notation
- give df's for t-dist (1 sample --- $n-1 ; 2$ sample --- get from calc) and χ^{2} Test dist $\{G O F$ $---n-1$; Homogen \& Assoc --- $(n-1)(m-1)$, get from calc\}
- calc exp values for χ^{2} for $1 \times n$ contingency table by hand
- calc exp values for χ^{2} for $n \times m$ contingency table using matrices
- use $\chi^{2} c d f$ (GOF) after calc χ^{2} by hand
- use χ^{2} Test for GOF test
- use χ^{2} Test for Homogen and Association
- discuss impact of particular component in χ^{2}
- read computer printout for inference for regression (ZOMBIES)
- calculate missing values in computer printout (t-statistic, p-value, seb)
- discuss Type I, Type II errors in context and consequences of each
- state $P($ Type $I)=a \quad P($ Type II $)=1-\beta \quad$ Power $=\beta$

V. Linear Regression \& Inference for Regression

- create scatterplot of data
- write linear regression model in context of problems
- interpret slope, y-intercept, correlation coefficient, and coefficient of determination in context
- create and interpret residual plot
- calculate and interpret residuals (over/under estimate)
- calculate observed values from residual
- discuss how influential points and outliers affect correlation and LSRL
- use computer output to create/discuss regression model
- use computer output to calculate test statistic, $\mathrm{seb}_{\mathrm{b}} \mathrm{p}$-value
- use computer output to create a confidence interval or run a hypothesis test

