Answers Putting It All Together: Probability Models and Sampling Distributions Ch 9

Part I: Discrete Probability Models

A. Binomial Probability Model $B(n, p)$

Ex 1

- $\mathrm{n}=16$
- $S=$ has type 0 neg, $F=$ does not have type O neg
- Blood types independent
- Prob remains the same, $p=.06, q=.94 \quad B(16, .06)$
$X=$ the number of people who have type O neg blood that are randomly selected out of 16 people
a) $\mu=n p=(16)(0.06)=0.96$

On average, in the long run, we can expect 0.96 people out of 16 randomly selected to have type O neg blood.
b) $\sigma=\sqrt{(16)(.06)(.94)}=.9499$
c) $\mathrm{P}(\mathrm{X}=0)={ }_{16} C_{0}(.06)^{0}(.94)^{16}=.3716$

The probability that no one in a group of 16 randomly selected people have type O neg blood is 37.16%.
d) $\mathrm{P}(\mathrm{X}=1)+\mathrm{P}(\mathrm{X}=2)={ }_{16} C_{1}(.06)^{1}(.94)^{15}+{ }_{16} C_{2}(.06)^{2}(.94)^{14}=.5611$

The probability that exactly 1 or 2 people in a group of 16 randomly selected people have type 0 neg blood is 56.11\%.

Ex 2

- $\mathrm{n}=21$
- $\mathrm{S}=$ attend minor league game, $\mathrm{F}=$ does not attend minor game
- Attending game independent
- Prob remains the same, $\mathrm{p}=.22, \mathrm{q}=.78 \quad \mathrm{~B}(21, .22)$
$X=$ the number of people who have attended a minor league baseball game that are randomly selected out of 21 people
a) $\mu=n p=(21)(0.22)=4.62 \quad * * *$ NOT large enough for $N(\mu, \sigma)$

On average, in the long run, we can expect 4.62 people out of 21 randomly selected to have attended a minor league baseball game.
b) $\sigma=\sqrt{(21)(.22)(.78)}=\sqrt{3.604}=1.8983$
c) $P(X \geq 4)=1-P(X \leq 3)=1-\left[{ }_{21} C_{0}(.22)^{0}(.78)^{21}+\ldots+{ }_{21} C_{3}(.22)^{3}(.78)^{18}\right]=.7102$

The probability that at least 4 out of the 21 randomly selected people have been to a minor league baseball game is 71.02%.
d) $P(X \leq 2)={ }_{21} C_{0}(.22)^{0}(.78)^{21}+\ldots+{ }_{21} C_{2}(.22)^{2}(.78)^{19}=.1281$

The probability that at most 2 out of 21 randomly selected people have been to a minor league baseball game is 12.81%.

Part I: Discrete Probability Models

B. Approximating the Binomial Distribution using the Normal Model $\mathbf{N}(\mu, \sigma)$

Ex. 1

- $\mathrm{n}=170$
- $S=$ has type 0 neg, $F=$ does not have type O neg
- Blood types independent
- Prob remains the same, $p=.06, q=.94 \quad B(170, .06)$
$\mathrm{np} \geq 10 \quad \mathrm{nq} \geq 10$
$10.2 \geq 10 \quad 159.8 \geq 10 \quad$ Counts large enough to use approx. Normal Distribution
a) $\mu=n p=(170)(0.06)=10.2$

On average, in the long run, we can expect 10.2 people out of 170 randomly selected to have type 0 neg blood.
b) $\sigma=\sqrt{(170)(.06)(.94)}=3.10 \quad \rightarrow \quad N(10.2,3.10)$
c) $P(X<9)=P\left(z<\frac{9-10.2}{3.10}\right)=P(z<-0.3871)=.3493$

The probability that less than 9 out of 170 randomly selected people have type O neg blood is 34.93\%.

d) $P(8<x<12)=P\left(\frac{8-10.2}{3.1}<z<\frac{12-10.2}{3.1}\right)=P(-0.7097<z<0.5806)=0.4803$

The probability that between 8 and 12 out of 170 randomly selected people have type O neg blood is 48.03%.

Ex. 2

- $\mathrm{n}=250$
- $\mathrm{S}=$ has attended minor league game, $\mathrm{F}=$ has not attended minor league game
- attendance independent
- Prob remains the same, p =.22, q = . $78 \quad \mathrm{~B}(250, .22$)
$n p \geq 10 \quad n q \geq 10$
$55 \geq 10 \quad 195 \geq 10$ Counts large enough to use approx. Normal Distribution
a) $\mu=n p=(250)(0.22)=55$

On average, in the long run, we can expect 55 people out of 250 randomly selected to have attended a minor league baseball game.
b) $\sigma=\sqrt{(250)(.22)(.78)}=6.55 \quad \rightarrow \quad N(55,6.55)$
c) $P(X=60)={ }_{250} C_{60}(.22)^{60}(.78)^{190}=0.0443$

The probability that exactly 60 out of 250 randomly selected people have been to a minor league baseball game is 4.43%.
d) $P(X>70)=P\left(z>\frac{70-55}{6.55}\right)=P(z>2.29)=0.011$

The probability that more than 70 out of 250 randomly selected people have been to a minor league baseball game is 1.1%.

Part II: Sampling Distributions

A. Mean Sampling Distributions $N\left(\mu_{-}, \sigma_{\bar{x}}\right)$
a) $\mu=$ the mean number of days a randomly selected Ford Escort runs before a breakdown
$\mu_{\bar{x}}=\mu=165$ days

$$
\sigma_{\bar{x}}=\frac{\sigma}{\sqrt{n}}=\frac{15}{\sqrt{64}}=1.875
$$

b) State: What is the probability that the number of days before a breakdown for a randomly selected Ford Escort is between 164.5 and 164.8 days?

Plan:
Random: The problem states a random sample of Ford Escorts is taken.

Independence: population of all Ford Escorts \geq 10(64) Condition met for independence (but not needed since selecting a single car).

Large Counts: $\quad n=64 \quad 64 \geq 10$

CLT states sample size large enough to use approx. Normal Distribution

Do: $P(164.5<x<164.8)=P\left(\frac{164.5-165}{15}<z<\frac{164.8-165}{15}\right)=P(-0.033<z<-0.013)=0.0079$
The probability that a randomly selected Ford Escort goes 164.5 to 164.8 days before a breakdown is 0.79%.

c) State: What is the probability that a randomly selected sample of 64 Ford Escorts will have a mean number of days before a breakdown less than 160 days?

Plan:
Parameter: $\quad \mu=$ the true mean number of days before a breakdown for Ford Escorts

Random: The problem states a random sample of 64 Ford Escorts is taken.

Independence: population of all Ford Escorts \geq 10(64) Condition met for independence.

Large Counts: $\quad n=64 \quad 64 \geq 10$
CLT states sample size large enough to use approx. Normal Distribution
Do: $\mu_{\bar{x}}=\mu=165$ days $\quad \sigma_{\bar{x}}=\frac{\sigma}{\sqrt{n}}=\frac{15}{\sqrt{64}}=1.875$
$P(\bar{x}<160)=P\left(z<\frac{160-165}{1.875}\right)=P(z<-2.67)=0.0038$
The probability that a random sample of 64 Ford Escorts will have a mean number of days before a breakdown less than 160 days is 0.38%.

Ex 2
a) $\quad \mu=63.7 \quad \sigma=11 \quad n=100$

The mean of the sampling distribution is $\mu_{\bar{x}}=\mu=63.7$. The standard deviation of the sampling distribution is $\sigma_{\bar{x}}=\frac{11}{\sqrt{100}}=1.1$.
b) State: What is the probability that a randomly selected student will score less than 61 on the biology exam?

Plan:
Random: The problem states the biology students were randomly selected.

Independence: population of all students $\geq 10(100)$
taking biology exam

$$
n=100 \quad 100 \geq 30
$$

Large Counts: $\quad n=100 \quad 100 \geq 30$

Condition met for independence (but not needed since selecting a single student).

CLT says that sample size is large enough to use approx. Normal distribution.

Do: $\quad N(\mu, \sigma)=N(63.7,11) \quad n=1$
$P(x<61)=P\left(z<\frac{61-63.7}{11}\right)=P(z<-0.245)=0.4032$
The probability that the grade of a randomly selected student will be less than 61 on a biology exam is 40.32%.

c) State: What is the probability that the mean grade of a randomly selected group of $\mathbf{1 0 0}$ students taking a biology exam will be between 65 and 67.2?

Plan:
Parameter: $\quad \mu=$ the true mean grade students score on a biology exam
Random: The problem states the biology students were randomly selected.

Independence: population of all students $\geq 10(100) \quad$ Condition met for independence. taking biology exam

Large Counts: $\quad n=100 \quad 100 \geq 30$
CLT says that sample size is large enough to use approx. Normal distribution.

Do: $n=100$ $N\left(63.7, \frac{11}{\sqrt{100}}\right)=N(63.7,1.1)$
$P(65<\bar{x}<67.2)=P\left(\frac{65-63.7}{1.1}<z<\frac{67.2-63.7}{1.1}\right)=P(1.18<z<3.18)=0.1179$
The probability that the mean grade on a biology exam of 100 randomly selected students will be between 65 and 67.2 is 11.79%.

Part II: Sampling Distributions

B. Proportion Sampling Distributions $\quad N\left(\mu_{\hat{p}}, \sigma_{\hat{p}}\right)$

Ex. 1
a) $\quad p=$ the true proportion of Maryland residents who believe the Orioles will finish third in their division.

$$
p=.17 \quad \mathrm{n}=130
$$

The mean of the sample proportion is $\mu_{\hat{p}}=.17$.
The standard deviation of the sample proportion is $\sigma_{\hat{p}}=\sqrt{\frac{(.17)(.83)}{130}}=.0329$.
b) State: What is the probability that less than 20 of the 130 Maryland residents believe the Orioles will finish third in their division?

Plan:
Parameter: $\quad p=$ the true proportion of Maryland residents who believe the Orioles will finish third in their division.

Random: The problem does not state the residents were selected randomly however there is no reason to assume otherwise.

Independence: all residents of Maryland $\geq 10(130) \quad$ Condition met for independence.

Large Counts: $\quad n p \geq 10 \quad n q \geq 10$
$22.1 \geq 10 \quad 107.9 \geq 10 \quad$ Sample size large enough to use approx. Normal distribution

Do: $\quad n=130 \quad \hat{p}=\frac{20}{130}=0.154 \quad \hat{q}=\frac{110}{130}=0.846$
$P(\hat{p}<.154)=P\left(z<\frac{.154-.17}{.0329}\right)=P(z<-0.486)=0.3135$

The probability that less than 20 of 130 randomly selected residents In Maryland believe the Orioles will finish third in their division is 31.35%.

c) State: What is the probability that more than 25 of the 130 Maryland residents believe the Orioles will finish third in their division?

Plan:

Parameter: $\quad p=$ the true proportion of Maryland residents who believe the Orioles will finish third in their division.

Random: The problem does not state the residents were selected randomly however there is no reason to assume otherwise.

Independence: all residents of Maryland $\geq 10(130) \quad$ Condition met for independence.

Large Counts: $n p \geq 10 \quad n q \geq 10$
$22.1 \geq 10 \quad 107.9 \geq 10$
Sample size large enough to use approx. Normal distribution

Do: $n=130 \quad \hat{p}=\frac{25}{130}=0.1923 \quad \hat{q}=\frac{105}{130}=0.8077$
$P(\hat{p}>.1923)=P\left(z>\frac{.1932-.17}{.0329}\right)=P(z>0.678)=0.2489$

The probability that more than 25 of 130 randomly selected residents In Maryland believe the Orioles will finish third in their division is 24.89%.

Ex. 2
a) $\quad p=$ the true proportion of Virginia drivers who find traffic conditions unsatisfactory on I-95.

$$
p=.8 \quad \mathrm{n}=400
$$

The mean of the sample proportion is $\mu_{\hat{p}}=.8$.
The standard deviation of the sample proportion is $\sigma_{\hat{p}}=\sqrt{\frac{(.8)(.2)}{400}}=.02$.
b) State: What is the probability that between 300 and 315 of 400 Virginia drivers find the traffic conditions on l-95 unsatisfactory ?

Plan:

Parameter: $\quad p=$ the true proportion of Virginia drivers who find the traffic conditions on I-95 unsatisfactory

Random: The problem does not state the drivers were selected randomly however there is no reason to assume otherwise.

Independence: all drivers in Virginia $\geq 10(400) \quad$ Condition met for independence.

$$
\begin{array}{lcc}
\text { Large Counts: } & n p \geq 10 & n q \geq 10 \\
& 320 & \geq 10
\end{array} \quad 80 \geq 10
$$

Sample size large enough to use

 approx. Normal distributionDo: $n=400 \quad \hat{p}=\frac{300}{400}=0.75 \quad \hat{q}=\frac{100}{400}=0.25$

$$
\hat{p}=\frac{315}{400}=0.7875 \quad \hat{q}=\frac{85}{400}=0.2125
$$

$P(.75<\hat{p}<.7875)=P\left(\frac{.75-.8}{.2}<z<\frac{.7875-.8}{.2}\right)=P(-2.5<z<-0.625)=0.2598$

The probability that between 300 and 315 of the 400 Virginia drivers find the traffic conditions on I-95 unsatisfactory is 25.98%

c) State: What is the probability that more than 350 of 400 Virginia drivers find the traffic conditions on l-95 unsatisfactory ?

Plan:
Parameter: $\quad p=$ the true proportion of Virginia drivers who find the traffic conditions on I-95 unsatisfactory

Random: The problem does not state the drivers were selected randomly however there is no reason to assume otherwise.

Independence: all drivers in Virginia $\geq 10(400) \quad$ Condition met for independence.

Large Counts: $n p \geq 10 \quad n q \geq 10$
$320 \geq 10 \quad 80 \geq 10 \quad$ Sample size large enough to use approx. Normal distribution

Do: $n=400 \quad \hat{p}=\frac{350}{400}=0.875 \quad \hat{q}=\frac{50}{400}=0.125$
$P(\hat{p}>.875)=P\left(z>\frac{.875-.8}{.2}\right)=P(z>3.75)=$ nearly 0
The probability that more than 350 of the 400 Virginia drivers find the traffic conditions on I-95 unsatisfactory is nearly 0%.

