Chapter 1 Study Guide: Exploring Data Ms Kempton

Individuals: The objects described by a set of data. (ex: people, animals, things...)

Variable: Any characteristic of an individual.

Categorical Variable: Places an individual into groups or categories. (ex: colors)

Quantitative Variable: Variables that are numbers. (ex: height, weight)

Describe Distribution:

<u>Compare Distributions</u>:

Shape: symmetric or skewed Outliers: value that is outside pattern Center: mean/median Spread(Variability): range

+ CONTEXT

Use comparative words (similar, greater than, less than)

<u>SHAPE of a distribution</u>: Use –ly words (slightly, moderately, strongly)

Symmetric	Skewed Left	Skev	wed Right
		\int	
Mean = Median	Mean < Median	Mear	n > Median
Other words to describe shape	Bimodal	Uniform]
	\bigwedge		

CENTER of a distribution:

~Mean: Use with symmetric data

~**Median:** middle point of a distribution $\left(location = \frac{n+1}{2}\right)$ — Use with skewed data

SPREAD/VARIABILITY of a distribution:

~**Range** = max – min

~ Standard Deviation = $\sqrt{variance}$ The average distance from the mean The <u>(context)</u> typically varies by <u>(SD)</u> from the mean by <u>(\bar{x})</u>. ~IQR = IQR = Q₃ - Q₁

Resistant: A measure that is unaffected by extreme values (ex-median)

~Skewed data or outliers \rightarrow Use median and IQR

~Symmetric data \rightarrow Use mean and standard deviation

<u>5 Number Summary</u>: MIN Q_1 MED Q_3 MAX \longrightarrow Use to make boxplot **Outliers**: way too small $< Q_1 - 1.5IQR$ and way too big $> Q_3 + 1.5IQR$ **Boxplots**:

Minimum	Q1		Median Q2	Q3	١	Maximum
25%	_	25%	25	%	25%	-
	2					

Chapter 2 Study Guide: Modeling Distributions of Data

Percentile: The value that has p% of data less than or equal to it

Z-score: The number of standard deviations above or below the mean.

Transforming Data.			
	+/-	÷/×	
S (shape)	S	S	
C (center)	С	С	
S (spread)	S	С	

Transforming Data:

Density Curve: Area under the curve is 1 (100%).

Normal Distribution: Symmetric and bell-shaped

Ms.Kempton

Area under the curve:

TO FIND AREA \longrightarrow 2nd \rightarrow VARS \rightarrow normalcdf(Use upper and lower as -10000 or 10000

IF GIVEN AREA \longrightarrow 2nd \rightarrow VARS \rightarrow invNorm(

~Only finds area to the left

Normal Probability Plot:

If the points are close to a straight line, then the data are approximately Normally distributed.

- 1) **Turn Plot1 On:** $2^{nd} \rightarrow STAT PLOT \rightarrow ENTER \rightarrow On$
- 2) Set Type: Use arrow keys to highlight the Type to bottom right-
- 3) Graph: ZOOM \rightarrow 9

Does your graph look like an approximate straight line?

*** If the points of the NORMAL probability plot are close to a straight line, then the data are approximately **Normally distributed**.

Graphing a Histogram, Boxplot, and Normal Probability Plot

Chapter 3 Study Guide: Exploring Two-Variable Data

Ms. Kempton

Explanatory Variable: Used to predict. (x-values)

Response Variable: What you want to predict. Outcome, responds to explanatory. (y-values)

Describe Relationship: (DUFS + context)

Direction: +/-Unusual points: possible outliers Form: linear Strength: strong/moderate/weak

+ CONTEXT

Template for Describing Relationship & Interpreting Correlation(*r*):

There is a _____, ____ linear relationship between _____ and ____. (strength) (direction)

Correlation (r): Relationship/Association ~Direction: +/ – ~Strength: strong/moderate/weak (*use -ly words for in between*)

Facts/Cautions about Correlation:

- r doesn't have units \rightarrow it is just a number used to measure direction and strength!
- Switching axes doesn't change $r \rightarrow$ any variable can be x and y
- r nonresistant \rightarrow strongly affected by outliers & high-leverage points
 - ~ high-leverage points in pattern strengthen
 - ~outliers out of pattern weaken
- Correlation does NOT imply causation !!!

Outlier: A point that does not follow the pattern and has a large residual. (far up/down)

High-Leverage: A point that has a much larger or smaller *x* value than the other points. (far left/right)

Influential Point: A point that, if removed, changes the relationship ($slope/y-int/r/r^2$, or s) substantially.

*Outliers and high-leverage points are often influential!

Least-Squares Regression Line: used to describe and/or predict the relationship between two variables.

~Interpreting y-intercept: When _____, the predicted _____ is ____.
~Interpreting Slope: For every additional _____, the predicted _____ increases/decreases by _____.
(units in x context) (y context) (slope)

~Extrapolation: using the LSRL to make a prediction far outside the observed x values.

<u>Residual</u>: Actual *y* – Predicted \hat{y} (*R* = *A* – *P*)

~Interpreting Residual: *The actual* ______ *is higher/lower than the predicted by* ______. (residual).

<u>Standard Deviation (s) of the Residuals</u>: used to assess how well the line fits all the data. This value gives the approximate size of a "typical" prediction error (residual).

Interpretation: The actual (<u>y-context</u>) is typically about (<u>standard deviation</u>) away from the predicted (<u>y-context</u>) by the LSRL.

<u>Coefficient of Determination</u> (r^2) : the *fraction/percent* (or piece) of the variation in the values of y that can be explained by the least-squares regression line.

▶ Interpretation: About _____% of the variability in (<u>y-context</u>) can be explained by the LSRL.

Nonlinear

Chapter 4 Study Guide: Designing Studies

Ms. Kempton

Population: All items or subjects.

Sample: Subset of population

Census: Selection of all items/subjects in a population

Sampling Methods (DATA COLLECTION):

Simple Random Sample (SRS): Every group of size *n* has an equal chance of being chosen.

Describing a SRS Procedure:			
 <u>Hat Trick</u> 1) Label <u>individuals</u> on equal-sized pieces of paper. (or assign each individual a number) (or assign each <u>individual</u> a number) 2) Randomize: Put them in a hat and mix well. 3) Select: Randomly select <u>(individuals)</u> (or those corresponding to the numbers) for the sample. Mix thoroughly after each selection. 	 <u>Technology</u> Label each <u>individual</u> with a number. Randomize: Using a random number generator, generate random numbers from to, ignoring repeats. Select: The (<u>individuals</u>) corresponding to those numbers would be selected for the sample. 		
*Individuals: Who/what you are sampling	*In Calculator: Math \rightarrow PRB \rightarrow randInt(1,n)		

Stratified Random Sample: Split the population into groups of similarity (strata), then take an SRS of <u>each</u> group. Those chosen from each SRS will be selected for the sample.

• Homogeneous grouping

Cluster Split population into groups based on location (clusters), then randomly select clusters (1

SRS). All individuals within the cluster are selected for the sample.

• Heterogeneous grouping

Systematic Random Sample: Randomly select a starting point and every *n*th individual thereafter will be selected for the sample.

Non-Random Sampling Methods:

- **Convenience Sample:** Choosing individuals easy to reach. (Bias)
- Voluntary Response Sample: People who choose themselves to be in the sample. (Bias)
 - Using people with strong opinions

Bias: Favoring a group (not fair).

- Undercoverage Bias: When members of the population are less likely to be chosen for a sample
- Nonresponse Bias: Individuals selected to be in a sample but can't be contracted or refuse.
- **Response Bias:** Inaccurate responses (lying or confusing questions).

Observational Study: No treatments imposed, only observed. (NO CAUSE/EFFECT)

- **Retrospective:** examine existing data
- **Prospective:** track individuals into the future

Experiment: Treatments imposed

- Experimental Units: Individuals assigned treatments. (Humans often called subjects)
- Explanatory Variable: Variable whose levels are manipulated intentionally.
- **Response Variable:** Outcome from the treatments administered.
- **Confounding Variables:** Variables that influence the response variable.

Well-Designed Experiment:

- a) Comparison: Compares at least two treatment groups.
- **b) Random Assignment:** Experimental units randomly assigned to treatments (balances confounding variables).
- c) Control: Control potential confounding variables.
- d) Replication: Enough experimental units in each treatment group (more than one).

Completely Randomized Design:

- **Random Selection:** Generalizes population.
- > Random Assignment: Allows causation.
- Single-blind Experiment: Subjects do not know which treatment they are receiving.
- Double-blind Experiment: Neither the subjects nor the experimenters who interact with the subjects know which treatment a subject is receiving.
- > Control Group: A group receiving an inactive treatment (Placebo).
- > Placebo Effect: When experiment units have a response to a placebo (fake treatment works).

<u>Randomized Block Design</u>: At the beginning of the experiment, units are divided.

Block: Group of experimental units that are similar in some way.

<u>Matched Pairs Design</u>: A pair or experimental units that are matched based off similarity then randomly assigned to each treatment.

Sometimes a "pair" consists of a single unit that receives both treatments. The order of the treatments is randomly chosen.

Statistically Significant: When results from a study are too unusual to have occurred purely by chance.

▶ Proportion of dots are $\leq 5\%$ → STATISTICALLY SIGNIFICANT

Chapter 5 Study Guide: Probability

Law of Large Numbers: States that when an experiment is performed a large number of times, the relative frequency (proportion) of an event tends to become closer to the actually probability.

Probability Model: List showing all possible outcomes and their probabilities.

- Each probability must between 0 and 1
- All probabilities (sample space) must add to 1

Mutually Exclusive: Events that cannot occur together \rightarrow If events are mutually exclusive $\rightarrow P(A \text{ or } B) = P(A) + P(B)$

Complement Rule: $P(A^C) = 1 - P(A) \longrightarrow$

Other Venn Diagrams and Probability Rules:

Chapter 6 Study Guide: Random Variables

Random Variable: Variable whose value is a numerical outcome of some chance process.

Discrete Random Variable: A random variable that takes a fixed set of possible values with gaps between.

Probability Distribution:

Continuous Random Variable: A random variable that takes all values in an interval of numbers.

> To find continuous random variable probabilities \rightarrow Use normalcdf (2nd \rightarrow VARS \rightarrow normalcdf)

Transforming and Combining Random Variables: TRANFORMATION RULES: Adding/Subtracting a Constant: S S C C Same: shape or spread (range, IOR, standard deviation) • Change: center (mean, median, quartiles, percentiles) Multiplying/Dividing a Constant: Same: shape • Changes: center (mean, median, quartiles, percentiles) or spread (range, IQR, standard deviation) • Mean of the Sum/Difference of Random Variables $\mu = \mu \pm \mu$ *The mean of the sum of several random variables is the sum or difference of their means. Variance of the Sum/Difference of Independent Random Variables

$$\sigma^2 = \sigma^2 + \sigma^2$$

*The variance of the sum of several independent random variables is the sum of their variances

Binomial Probability:

Binomial Setting: (BINS)

- **B**inary: "success" or "failure"
- Independent: One trial's outcome does not affect any other trial
- Number: Set number of trials *n* = _____
- Success: Same probability *p* = _____

Mean and Standard Deviation of a Binomial Distribution: ON FORMULA SHEET:

```
Mean \rightarrow \mu_X = np
```

Standard Deviation: $\sigma_x = \sqrt{np(1-p)}$

Geometric Probability:

Geometric Setting: (BINS without the N)

- **B**inary: "success" or "failure"
- Independent: One trial's outcome does not affect any other trial
- Success: Same probability *p* = _____

Mean and Standard Deviation of a Geometric Distribution: ON FORMULA SHEET:

Mean
$$\rightarrow \mu_x = \frac{1}{p}$$
 Standard Deviation: $\sigma_x = \frac{\sqrt{(1-p)}}{p}$

Chapter 7 Study Guide: Sampling Distributions

Sampling Distribution: The distribution of values from all possible samples of size n.

Parameter: A number that describes a **p**opulation.

• p = population proportion and $\mu =$ population mean

<u>Statistic:</u> A number that describes a <u>s</u>ample.

• \hat{p} = sample proportion and \bar{x} = sample mean

Unbiased Estimator: The mean of the sampling distribution is equal to the population parameter.

- $\hat{p} = p$ and $\bar{x} = \mu$
- A larger sample size will decrease variability ($\underline{\mathbf{L}}$ arger sample = $\underline{\mathbf{L}}$ ess variability)

Statistic ± (critical value)(standard error of statistic)

(point estimate)

One-Sample z Interval for a Population Proportion			
In Calculator:		<u>By Hand</u> :	
STAT → TESTS → 1-PropZint (A) →	1-PropZint x: n: C-Level:	$\hat{p} \pm z * \sqrt{\frac{\hat{p}(1-n)}{n}}$ Find <i>z</i> : 2 nd \rightarrow VARS \rightarrow	$\frac{invNorm(}{area:}$ $\mu = \sigma:$

One-Sample <i>t</i> Interval for a Po	pulation Mea	an: (When Population SD is unknown)
In Calculator:		By Hand:
STAT \rightarrow TESTS \rightarrow TInterval (8) \rightarrow	Tinterval Input: Stats \overline{x} : Sx: n: C-Level:	$\overline{x} \pm t * \frac{s_x}{\sqrt{n}}$ Find $t: 2^{nd} \rightarrow VARS \rightarrow $ area: df:
		(df = n-1)
Width of confidence interval: -Confidence interval \downarrow as sample size $n \uparrow$ -Confidence interval \uparrow as confidence level \uparrow		statistic ± (critical value)(standard error of statistic)
Interpreting Confidence Level:		To find sample size: $z^* \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \le ME$ \Rightarrow If \hat{p} is not given \Rightarrow use 0.5

*In repeated random samples of size ____(n) from this population, about ____% of confidence intervals created will capture the true population (proportion or mean) of...

*KEMP DEF: In the long run, _____ % of intervals generated capture the population proportion/mean

	Confidence Intervals: A Four-Step Process				
	Proportions	Means			
S T	p = true proportion of	μ = true mean of			
A T E	Confidence Level =	Confidence Level =			
P L A N	<u>Name</u> : One Sample z interval for p <u>Conditions</u> : 1) Random sample 2) Independent if $n \le 10\% N$ 3) App Normal if $n\hat{p} \ge 10$ and $n(1-\hat{p}) \ge 10$	 <u>Name</u>: One Sample <i>t</i> interval for μ <u>Conditions</u>: Random sample Independent if <i>n</i>≤10%<i>N</i> Approximately Normal if: <i>n</i>≥30 Sample shows no strong skewness and outliers 			
D O	$\hat{p} \pm z^* \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$ OR 1-PropZInt (A)	$\overline{x} \pm t * \frac{s_x}{\sqrt{n}}$ OR TInterval (8)			
C O N C L U D	We are% confident that the interval from to captures the true proportion of	We are% confident that the interval from to captures the true mean of			
\mathbf{E}					

Chapter 9 Study Guide:

Significance Tests

Standardized test statistic = $\frac{\text{statistic} - \text{parameter}}{\text{standard error of the statistic}} = \frac{\text{stat} - \text{null}}{\text{SD}}$

Significance Tests: A Four-Step Process			
	Proportions	Means	
S T A T E	p = true proportion of $H_0: p =$ $H_a: p \neq, <, or >$	μ = true mean of H ₀ : μ = H _a : $\mu \neq$, <, or >	
P L A N	<u>Name</u> : One Sample z Test for p <u>Conditions</u> : 1) Random sample 2) Independent if $n \le 10\%N$ 3) App Normal if $np_0 \ge 10$ and $n(1-p_0) \ge 10$	 <u>Name</u>: One Sample <i>t</i> Test for μ <u>Conditions</u>: Random sample Independent if <i>n</i>≤10%<i>N</i> Approximately Normal if: <i>n</i>≥30 Sample shows no strong skewness and outliers 	
D O	$z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}} \text{OR} 1\text{-PropZTest (5)}$	$t = \frac{\overline{x} - \mu_0}{\frac{s}{\sqrt{n}}} \qquad \text{OR} \qquad \text{T-Test} (2)$	
C O N C L U D E	p-value $\leq \alpha$, reject H ₀ . We have convincing evidence that the true proportion of(H _a) p-value > α , fail to reject H ₀ . We do not have convincing evidence that the true proportion of(H _a)	p-value $\leq \alpha$, reject H ₀ . We have convincing evidence that the true mean of(H _a) p-value > α , fail to reject H ₀ . We do not have convincing evidence that the true mean of(H _a)	

Confidence Intervals: A Four-Step Process				
	Proportions	Means		
S T	$p_1 - p_2$ = true difference in proportions of	$\mu_1 - \mu_2$ = true difference in means of		
A T	Confidence Level =	Confidence Level =		
\mathbf{E}				
	<u>Name</u> : Two Sample z interval for $p_1 - p_2$	<u>Name</u> : Two Sample <i>t</i> interval for $\mu_1 - \mu_2$		
P L A N	Conditions: 1) Random samples 2) Independent if: $n_1 \le 10\% N$ $n_2 \le 10\% N$ 3) Approximately Normal if: $n_1 \hat{p}_1 \ge 10$ and $n_1(1-\hat{p}_1) \ge 10$ $n_2 \hat{p}_2 \ge 10$ and $n_2(1-\hat{p}_2) \ge 10$	 <u>Conditions</u>: 1) Random samples 2) Independent if: n₁ ≤ 10% N n₂ ≤ 10% N 3) Approximately Normal if: > n₁ ≥ 30 and n₂ ≥ 30 > Sample shows no strong skewness and outliers 		
D O	$(\hat{p}_1 - \hat{p}_2) \pm z^* \sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}$ OR 2-PropZint (B)	$(\bar{x}_1 - \bar{x}_2) \pm t^* \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$ OR 2-SampTInt (0)		
C O				
Ν	We are % confident that the interval	We are % confident that the interval from		
C	from to captures the true	to captures the true difference in		
T	difference in proportions of	means of		
E				

	Significance Tests: A Four-Step Process				
	Proportions	Means			
S T A	H ₀ : $p_1 = p_2$ H _a : \neq , <, or >	H ₀ : $\mu_1 = \mu_2$ H _a : $\mu \neq$, <, or >			
Т	$p_1 = $ true proportion of	$\mu_1 = $ true mean of			
Ē	$p_2 = $ true proportion of	$\mu_2 = $ true mean of			
P L A N	Name: Two Sample z Test for $p_1 - p_2$ Conditions: 1) Random samples 2) Independent if: $n_1 \le 10\% N$ $n_2 \le 10\% N$ 3) Approximately Normal if: $n_1\hat{p}_1 \ge 10$ and $n_1(1-\hat{p}_1) \ge 10$ $n_2\hat{p}_2 \ge 10$ and $n_2(1-\hat{p}_2) \ge 10$	Name: Two Sample <i>t</i> Test for $\mu_1 - \mu_2$ Conditions: 1) Random samples 2) Independent if: $n_1 \le 10\% N$ $n_2 \le 10\% N$ 3) Approximately Normal if: $n_1 \ge 30$ and $n_2 \ge 30$ $\sum n_1 \ge 30$ and $n_2 \ge 30$			
D O	2-propZTest (6)	2-SampTTest (4)			
C O N C L U D E	p-value $\leq \alpha$, reject H ₀ . We have convincing evidence that(H _a) p-value > α , fail to reject H ₀ . We do not have convincing evidence(H _a)	p-value $\leq \alpha$, reject H ₀ . We have convincing evidence that(H _a) p-value > α , fail to reject H ₀ . We do not have convincing evidence that(H _a)			